Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T13:14:20.562Z Has data issue: false hasContentIssue false

Perceived number is not abstract

Published online by Cambridge University Press:  15 December 2021

Lauren S. Aulet
Affiliation:
Department of Psychology, Emory University, Atlanta, GA30322, USA. lauren.s.aulet@emory.edu stella.lourenco@emory.edu
Stella F. Lourenco
Affiliation:
Department of Psychology, Emory University, Atlanta, GA30322, USA. lauren.s.aulet@emory.edu stella.lourenco@emory.edu

Abstract

To support the claim that the approximate number system (ANS) represents rational numbers, Clarke and Beck (C&B) argue that number perception is abstract and characterized by a second-order character. However, converging evidence from visual illusions and psychophysics suggests that perceived number is not abstract, but rather, is perceptually interdependent with other magnitudes. Moreover, number, as a concept, is second-order, but number, as a percept, is not.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aulet, L. S., & Lourenco, S. F. (2021a). Number and cumulative surface area are perceived holistically as integral dimensions. Journal of Experimental Psychology: General, 150, 145156.CrossRefGoogle Scholar
Aulet, L. S., & Lourenco, S. F. (2021b). The relative salience of numerical and non-numerical dimensions shifts over development: A re-analysis of Tomlinson, DeWind, and Brannon (2020). Cognition, 210, 104610.CrossRefGoogle Scholar
Aulet, L. S., & Lourenco, S. F. (2021c). No intrinsic number bias: Evaluating the role of perceptual discriminability in magnitude categorization. PsyArXiv. https://doi.org/10.31234/osf.io/eh5pb.Google Scholar
Burge, T. (2010). The origins of objectivity. Oxford University Press.CrossRefGoogle Scholar
Cicchini, G. M., Anobile, G., & Burr, D. C. (2016). Spontaneous perception of numerosity in humans. Nature Communications, 7, 17.CrossRefGoogle ScholarPubMed
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 142.CrossRefGoogle ScholarPubMed
DeWind, N. K., Park, J., Woldorff, M. G., & Brannon, E. M. (2019). Numerical encoding in early visual cortex. Cortex, 114, 7689.CrossRefGoogle ScholarPubMed
Dormal, V., Larigaldie, N., Lefèvre, N., Pesenti, M., & Andres, M. (2018). Effect of perceived length on numerosity estimation: Evidence from the Müller-Lyer illusion. Quarterly Journal of Experimental Psychology, 71, 21422151.CrossRefGoogle ScholarPubMed
Ferrigno, S., Jara-Ettinger, J., Piantadosi, S. T., & Cantlon, J. F. (2017). Universal and uniquely human factors in spontaneous number perception. Nature Communications, 8, 110.CrossRefGoogle ScholarPubMed
Fornaciai, M., & Park, J. (2021). Disentangling feedforward versus feedback processing in numerosity representation. Cortex, 135, 255267.CrossRefGoogle ScholarPubMed
Franconeri, S. L., Bemis, D. K., & Alvarez, G. A. (2009). Number estimation relies on a set of segmented objects. Cognition, 113, 113.CrossRefGoogle ScholarPubMed
Frege, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl, Breslau: W. Koebner; translated as The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, by J.L. Austin, Oxford: Blackwell, second revised edition, 1974.Google Scholar
Garner, W. R. (1974). The stimulus in information processing. In Moskowitz, H. R., Scharf, B., & Stevens, J. C. (Eds.), Sensation and measurement: Papers in honor of S. S. Stevens (pp. 7790). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Halberda, J. (2019). Perceptual input is not conceptual content. Trends in Cognitive Sciences, 23, 636638.CrossRefGoogle Scholar
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.CrossRefGoogle Scholar
Lucero, C., Brookshire, G., Sava-Segal, C., Bottini, R., Goldin-Meadow, S., Vogel, E. K., & Casasanto, D. (2020). Unconscious number discrimination in the human visual system. Cerebral Cortex, 30, 58215829.CrossRefGoogle ScholarPubMed
McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18, 740745.CrossRefGoogle ScholarPubMed
Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 491505.Google ScholarPubMed
Picon, E., Dramkin, D., & Odic, D. (2019). Visual illusions help reveal the primitives of number perception. Journal of Experimental Psychology: General, 148, 16751687.CrossRefGoogle ScholarPubMed
Shepard, R. N. (1964). Attention and the metric structure of the stimulus space. Journal of Mathematical Psychology, 1, 5487.CrossRefGoogle Scholar
Testolin, A., Dolfi, S., Rochus, M., & Zorzi, M. (2020). Visual sense of number vs. Sense of magnitude in humans and machines. Scientific Reports, 10, 113.CrossRefGoogle ScholarPubMed
Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117, 57265732.CrossRefGoogle ScholarPubMed
Wynn, K., Bloom, P., & Chiang, W. C. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83, B55B62.CrossRefGoogle ScholarPubMed