Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T04:06:01.076Z Has data issue: false hasContentIssue false

Representation of pure magnitudes in ANS

Published online by Cambridge University Press:  15 December 2021

Steven Gross
Affiliation:
William H. Miller III Department of Philosophy, Johns Hopkins University, Baltimore, MD21218, USAsgross11@jhu.eduhttps://sites.google.com/site/grosssteven/
William Kowalsky
Affiliation:
Department of Philosophy, York University, Toronto, ONM3J 1P3, Canadawilliam.kowalsky@gmail.comhttp://williamkowalsky.com/
Tyler Burge
Affiliation:
Department of Philosophy, University of California, Los Angeles, Los Angeles, CA90095-1451, USA. burge@ucla.eduhttps://philosophy.ucla.edu/person/tyler-burge/

Abstract

According to Clarke and Beck (C&B), the approximate number system (ANS) represents numbers. We argue that the ANS represents pure magnitudes. Considerations of explanatory economy favor the pure magnitudes hypothesis. The considerations C&B direct against the pure magnitudes hypothesis do not have force.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burge, T. (1977). A theory of aggregates. Nous 11:97117.CrossRefGoogle Scholar
Burge, T. (1982). Other bodies. In: Thought and object (pp. 97120), ed. Woodfield, A.. Oxford University Press.Google Scholar
Burge, T. (2005). Truth, thought, reason: Essays on Frege. Oxford University Press.CrossRefGoogle Scholar
Burge, T. (2010). Origins of objectivity. Oxford University Press.CrossRefGoogle Scholar
Burge, T. (2021). Perception: First form of mind. Oxford University Press.Google Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl. W. Koebner.Google Scholar
Peacocke, C. (1986). Analogue content. Proceedings of the Aristotelian Society 60:117.CrossRefGoogle Scholar
Peacocke, C. (2019). The primacy of metaphysics. Oxford University Press.CrossRefGoogle Scholar
Scott, D. (1963). A general theory of magnitudes. Unpublished manuscript.Google Scholar
Stein, H. (1990). Eudoxos and Dedekind: On the ancient Greek theory of ratios and its relation to modern mathematics. Synthese 84:163211.Google Scholar
Sutherland, D. (2006). Kant on arithmetic, algebra, and the theory of proportions. Journal of the History of Philosophy 44:533558.CrossRefGoogle Scholar