An interspersed refuge of susceptible plants in a resistant, spring-sown wheat crop was tested as a strategy to protect crop resistance against evolution of virulence by the wheat midge Sitodiplosis mosellana (Géhin), and also to conserve a biocontrol agent Macroglenes penetrans(Kirby). Eight replicated field experiments were conducted using seed mixtures of 0, 5, 10, 15 and 100% or 0, 5 and 100% susceptible wheat with an agronomically similar wheat expressing the antibiotic resistance gene Sm1. The frequencies of eggs, mature larvae and parasitized larvae in susceptible and resistant wheat spikes, and midge-affected seeds in the harvest, were recorded for each plot. In susceptible wheat, insect densities and seed damage were typical of those in commercial wheat. In resistant wheat, few larvae completed development, 2% or less compared with about 80% in susceptible wheat, when larvae were sampled at maturity. This resistant wheat also deterred midge oviposition, reducing egg densities by 65% compared with susceptible wheat. The wheat midge and its parasitoid oviposited throughout the plots, and parasitism was density independent. The densities of mature midge larvae and parasitoids were in proportion to the size of the refuge. A 5% susceptible refuge produced about 41 mature larvae for each mature larva from the resistant wheat, and provided effective control of damage. An interspersed refuge of susceptible plants in resistant wheat is a promising strategy for sustaining resistance conferred by Sm1 and biocontrol of the wheat midge.