In the central nervous system, the neurotransmitter norepinephrine is involved in normal physiology, neuropsychiatric disorders, and the effects of numerous drugs. Although alterations of the central noradrenergic system are involved in the pathophysiology and pharmacotherapy of mood disorders, the basis and nature of these changes remain unresolved. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging agents will be valuable for further elucidating the roles of norepinephrine in health and disease. This review discusses PET and SPECT radioligands that have been developed for the enzymes, receptors, and transporters involved in noradrenergic neurotransmission. Currently, imaging agents that exhibit specific in vivo uptake in the brain have been described for monoamine oxidase A and β-adrenergic receptors, but have not undergone detailed evaluation or experimental application. Based on the successful development and utilization of in vivo imaging agents for elements of the central dopaminergic and serotoninergic systems, PET and SPECT radioligands are expected to serve as new tools for studying the physiology, pathophysiology, and pharmacology of the central noradrenergic system.