Let F(z) be a Hecke–Maass form for SL(m, ℤ) with m ⩽ 3, or be the symmetric power lift of a Hecke–Maass form for SL(2, ℤ) if m = 4, 5 and let AF (n, 1, . . ., 1) be the coefficients of L-function attached to F. We establish $$\sum_{q\leq Q}\max_{(a,q)=1}\max_{y\leq x}\left|\sum_{n\leq y \atop n\equiv a\bmod q}A_F(n,1, \dots, 1)\Lambda(n)\right| \ll x\log^{-A}x,$$ where Q = x ϑ−ϵ with some ϑ > 0, the implied constant depends on F, A, ϵ.