The author's general variational method is applied to the case of a particle for which second moments are important but third and higher moments are negligible. Equations of motion are obtained for the angular momentum and for the centre of mass, equations (12·35) and (12·41), with arbitrary external forces X.
The angular forces are then calculated for a charged particle with electric and magnetic moments moving in a general electromagnetic field, on the assumption that the effect of a certain part of the energy tensor, Tiii of (15·17), is negligible. This leads to the equations of angular motion, (17·13), from which it is inferred that, in order that the magnitude of the angular momentum may be integrable, the angular momentum, electric and magnetic moments must all be parallel in a frame of reference in which the particle is instantaneously at rest.
The linear forces are then calculated for the case of no electric moment, leading to the equations for linear motion (18·10). From these it is inferred that, in order that the mass may be integrable, the ratio of the magnetic moment to the angular momentum must be constant.