1. Introduction. In studying the elastic behaviour of inhomogeneous systems certain inclusion and inhomogeneity problems are fundamental. In the ‘transformation problem’, a region (the ‘inclusion’) of an unbounded homogeneous anisotropic elastic medium would undergo some prescribed infinitesimal uniform strain (because of some spontaneous change in its shape) if it were not for the constraint imposed by the surrounding matrix. When the inclusion has an ellipsoidal shape, Eshelby (3, 4) was able to show that the stress and strain fields within the constrained inclusion are uniform and that calculations could be completed when the medium was isotropic. A generally anisotropic medium seemed to raise forbidding analyses, but Eshelby (3) did point the way to an evaluation of the uniform strain which several authors (referred to later) developed into an expression amenable to numerical computation. Here we offer an elementary and immediate route to this expression of the uniform strain, which has been accessible hitherto only by the circuitous procedures of Fourier transforms. It is available as soon as the uniform state of strain in the inclusion is perceived and before an alternative evaluation is commenced. First, we appeal to a theorem (not it seems previously known) which reveals (in particular) the vanishing of the mean strain in the infinitesimally thin ellipsoidal homoeoid lying just outside the inclusion. Secondly, we need only reflect that at each point of the interface there is an immediate algebraic expression of the strain just outside the inclusion in terms of the uniform strain just inside.