Conversion of waste graphite into a stable waste form acceptable for long term storage and disposal was considered both theoretically and experimentally. A self-sustaining transformation process of graphite composited with suitable precursors was studied. The powdered precursors that were used were used were: Al+SiO2 (1), Al+TiO2 (2) and Ti+SiO2 (3).
Numeric thermodynamic simulation was performed. Equilibrium temperatures and chemical compositions of reaction products were determined for a wide range of component ratios in the source mixtures. The highest temperatures (up to 2300 K) were observed for precursor type (2). Precursor type (3) demonstrated a minimal rise of temperature of up to 1900 K.
Regions of compositions with complete binding of all chemical elements as well as production of stable final products were found to be rather narrow. About 10 – 13 wt.% of carbon can be processed in composition with given precursors. The gas phase reaction products were studied to minimize carry over of radionuclides. Carbon monoxide was shown to be the main component of the gas phase.
The self-sustaining synthesis process was conducted in ceramic crucibles at ambient pressure in an air atmosphere. Batch masses ranged between 0.1 – 1 kg. Best results were obtained for processing of graphite composited with Al and TiO2. XRD analysis has identified titanium carbide and corundum in the waste form produced. These experiments confirmed that carbon can be converted completely into a stable waste form.