The debate between Glymour ([2]) and Fine ([1]) hinges in part on a comparison of the width of the incoming wave packet in momentum space with the angles intercepted by the detectors in the Cross-Ramsey experiment. As Fine argues, it follows from the quantum formalism that the initial dispersion will be conserved in Compton scattering, and he allows that the Sum Rule is constrained by the statistical results of quantum mechanics. The Sum Rule may fail, but it will not fail in any way that violates quantum mechanics. Thus most of the time the individual momentum value does not change more than the width of the initial wave packet: usually the value of Qγe at t must equal the value of Qγ at t′ plus the value of Qe at t′ ± Δp/2, where Δp represents the dispersion in momentum for the initial gamma ray. Thus in order to refute Fine's thesis, the detectors must discriminate finely enough to pick out changeovers of individual values within Δp.