The countability index, C(S), of a semigroup S is the smallest integer n, if it exists, such that every countable subset of S is contained in a subsemigroup with n generators. If no such integer exists, define C(S) = ∞. The density index, D(S), of a topological semigroup S is the smallest integer n, if it exists, such that S contains a dense subsemigroup with n generators. If no such integer exists, define D(S) = ∞. S(X) is the topological semigroup of all continuous selfmaps of the locally compact Hausdorff space X where S(X) is given the compact-open topology. Various results are obtained about C(S(X)) and D(S(X)). For example, if X consists of a finite number (< 1) of components, each of which is a compact N-dimensional subspace of Euclidean Nspace and has the internal extension property and X is not the two point discrete space. Then C(S(X)) exceeds two but is finite. There are additional results for C(S(X)) and similar results for D(S(X)).