To obtain the wave characteristics of hot magnetized plasma, requires investigating a complete dispersion equation describing the oscillations of magnetized plasma, of the form \begin{equation} a+(\omega ^2/k^2c^2)b+(\omega ^4/k^4c^4)c_0=0. \end{equation} Here, \begin{center} $a=(k_{\bot }^2/k^2)\varepsilon _{xx}+(k_z^2/k^2)\varepsilon_{zz}+2(k_{\bot }k_z/k^2)\varepsilon _{xz}$, \end{center} \begin{center} $b=-\varepsilon _{xx}\varepsilon _{zz}+\varepsilon_{xx}^2-(k_z^2/k_{}^2) (\varepsilon _{yy}\varepsilon_{zz}+\varepsilon _{yz}^2)-(k_{\bot }^2/k^2) (\varepsilon_{xx}\varepsilon _{yy}+\varepsilon _{xy}^2)\nonumber +2(k_{\bot}k_z/k^2)(\varepsilon _{xy}\varepsilon _{yz}-\varepsilon_{xz}\varepsilon _{zy})$,\end{center}\begin{center}$c_0=\varepsilon _{zz}(\varepsilon _{xx}\varepsilon_{yy}+\varepsilon _{xy}^2)+\varepsilon _{xx}\varepsilon_{yz}^2-\varepsilon _{yy}\varepsilon _{xz}^2+2\varepsilon_{yz}^{}\varepsilon _{xz}\varepsilon _{xy}$,\vspace*{4pt}\end{center} ω is the complex frequency of the wave, k is the wave number, c is the velocity of light in a vacuum, $k_z$ is the longitudinal (with respect to the magnetic field) wave vector component, $k_{\bot}$ is the transverse wave vector component, and $\varepsilon_{ij}$ stands for the components of the dielectric tensor.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html