Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T21:56:06.095Z Has data issue: false hasContentIssue false

Physical activity, protein metabolism and protein requirements

Published online by Cambridge University Press:  28 February 2007

D. Joe Millward
Affiliation:
Nutritional Metabolism Research Group, School of Biological Sciences, University of Surrey, Guildford GU2 5XH
Joanna L. Bowtell
Affiliation:
Department of Anatomy and Physiology, University of Dundee, Dundee DD1 4HN Nutritional Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, 4 St Pancras Way, London NW1 2PE
Paul Pacy
Affiliation:
Nutritional Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, 4 St Pancras Way, London NW1 2PE
Michael J. Rennie
Affiliation:
Department of Anatomy and Physiology, University of Dundee, Dundee DD1 4HN Nutritional Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, 4 St Pancras Way, London NW1 2PE
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrition and activity’
Copyright
Copyright © The Nutrition Society 1994

References

Ashworth, A. & Millward, D. J. (1986). Catch-up growth in children. Nutrition Reviews 44, 157163.CrossRefGoogle ScholarPubMed
Bates, P. C., Millward, D. J. & Rennie, M. J. (1981). Re-examination of the effect of exercise on muscle protein synthesis in the rat. Journal of Physiology 317, 20.Google Scholar
Butterfield, G. E. & Calloway, D. H. (1984). Physical activity improves protein utilization in young men. British Journal of Nutrition 51, 171184.CrossRefGoogle ScholarPubMed
Bylund-Fellenius, A.-C., Ojamaa, K. M., Flaim, K. E., Li, J. B., Wassner, S. J. & Jefferson, L. S. (1984). Protein synthesis versus energy state in contracting muscle of perfused rat hindlimb. American Journal of Physiology 246, E297E305.Google Scholar
Cannon, J. G., Fielding, R. A., Fiatarone, M. A., Orencole, S. F., Dinarello, C. A. & Evans, W. J. (1989). Interleukin-1b in human skeletal muscle following exercise. American Journal of Physiology 257, R451R455.Google Scholar
Chesley, A., MacDougall, J. D., Tarnopolsky, M. A., Atkinson, S. A. & Smith, K. (1992). Changes in human muscle protein synthesis following resistance exercise. Journal of Applied Physiology 73, 13831388.CrossRefGoogle Scholar
Chittenden, R. H. (1907). The Nutrition of Man. London: Heinemann.Google Scholar
Davies, C. T. M., Halliday, D., Millward, D. J., Rennie, M. J. & Sutton, J. R. (1982). Glucose inhibits CO2 production from leucine during whole-body exercise in man. Journal of Physiology 332, 41–42P.Google Scholar
Department of Health (1991). Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. London: H.M. Stationery Office.Google Scholar
Dodson, M. V., Allen, R. E. & Hossner, K. L. (1985). Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro. Endocrinology 117, 23572362.CrossRefGoogle ScholarPubMed
Dohm, G. L., Tapscott, E. B. & Kasperek, G. J. (1987). Protein degradation during endurance exercise and recovery. Medicine and Science in Sports and Exercise 19, S166S171.CrossRefGoogle ScholarPubMed
Elia, M. & Livesey, G. (1981). Branched chain amino acid and oxo acid metabolism in human and rat muscle. In Metabolism and Clinical Implications of Branched Chain Amino and Ketoacids, pp. 257262 [Walser, M. and Williamson, J. R., editors]. New York, Amsterdam, Oxford: Elsevier/North Holland.Google Scholar
Eriksson, L. S., Broberg, S., Björkman, O. & Wahren, J. (1985). Ammonia metabolism during exercise in man. Clinical Physiology 5, 325336.CrossRefGoogle ScholarPubMed
Evans, W. J. (1986). Exercise and muscle metabolism in the elderly. In Nutrition and Aging, pp. 170191 [Hutchinson, M. L. and Munro, H. N., editors]. San Diego, California: Academic Press.Google Scholar
Evans, W. J. (1993). Exercise, ageing and protein metabolism. In Protein Energy Interactions, pp. 235248 [Scrimshaw, N. S. and Schurch, B., editors]. Lausanne: Nestlé Foundation.Google Scholar
Felig, P. & Wahren, J. (1971). Amino acid metabolism in exercising man. Journal of Clinical Investigation 50, 27032709.CrossRefGoogle ScholarPubMed
Fielding, R. A., Meredith, C. N., O'Reilly, K. P., Frontera, W. R., Cannon, J. G. & Evans, W. J. (1991). Enhanced protein breakdown after eccentric exercise in young and older men. Journal of Applied Physiology 71, 674679.CrossRefGoogle Scholar
Food and Agriculture Organization/World Health Organization/United Nations University (1985). Energy and Protein Requirements. Report of a Joint Expert Consultation. WHO Technical Report Series no. 724. Geneva: WHO.Google Scholar
Forbes, G. B. (1985). Body composition as affected by physical activity and nutrition. Federation Proceedings 44, 343347.Google ScholarPubMed
Frick, G. P. & Goodman, H. M. (1980). Insulin regulation of branched chain alpha-keto acid dehydrogenase in adipose tissue. Journal of Biological Chemistry 255, 61866192.CrossRefGoogle ScholarPubMed
Gontzea, I., Sutzescu, P. & Dumitrache, S. (1975). The influence of adaptation to physical effort on nitrogen balance in man. Nutrition Reports International 22, 231236.Google Scholar
Graham, T. E., Kiens, B., Hargreaves, M. & Richter, E. A. (1991). Influence of fatty acids on ammonia and amino acid flux from active human muscle. American Journal of Physiology 261, E168E176.Google ScholarPubMed
Gregory, J., Foster, K., Tyler, H. & Wiseman, M. (1990). The Dietary and Nutritional Survey of British Adults. London: H.M. Stationery Office.Google Scholar
Henriksson, J. (1991). Effect of exercise on amino acid concentrations in skeletal muscle and plasma. Journal of Experimental Biology 160, 149165.CrossRefGoogle ScholarPubMed
Jones, D. A., Newham, D. J., Round, J. M. & Tolfree, S. E. J. (1986). Experimental human muscle damage: morphological changes in relation to other indices of damage. Journal of Physiology 375, 435448.CrossRefGoogle ScholarPubMed
Jones, D. A. & Rutherford, O. M. (1987). Human muscle strength training: the effects of three different regimes and the nature of the resultant changes. Journal of Physiology 391, 111.CrossRefGoogle ScholarPubMed
Katz, A., Sahlin, K. & Henriksson, J. (1986). Muscle ammonia metabolism during isometric contraction in humans. American Journal of Physiology 250, C834C840.CrossRefGoogle ScholarPubMed
Khatra, B. S., Chawla, R. K., Sewell, C. W. & Rudman, D. (1977). Distribution of branched-chain alpha-keto acid dehydrogenases in primate tissues. Journal of Clinical Investigation 59, 558564.CrossRefGoogle ScholarPubMed
Knapik, J., Meredith, C., Jones, B., Fielding, R., Young, V. & Evans, W. (1991). Leucine metabolism during fasting and exercise. Journal of Applied Physiology 70, 4347.CrossRefGoogle ScholarPubMed
Laurent, G. J. & Millward, D. J. (1980). Protein turnover during skeletal muscle hypertrophy. Federation Proceedings 39, 4247.Google ScholarPubMed
Lemon, P. W. R. & Nagle, F. J. (1981). Effects of exercise on protein and amino acid metabolism. Medicine and Science in Sports and Exercise 13, 141149.CrossRefGoogle ScholarPubMed
Lemon, P. W. R., Nagle, F. J., Mullin, J. P. & Benevenga, N. J. (1982). In vivo leucine oxidation at rest and during two intensities of exercise. Journal of Applied Physiology 53, 947954.CrossRefGoogle ScholarPubMed
Lowenstein, J. M. & Goodman, M. N. (1978). The purine nucleotide cycle in skeletal muscle. Federation Proceedings 37, 23082312.Google ScholarPubMed
Meredith, C. N., Zackin, M. J., Frontera, W. R. & Evans, W. J. (1989). Dietary protein requirements and body protein metabolism in endurance-trained men. Journal of Applied Physiology 66, 28502856.CrossRefGoogle ScholarPubMed
Millward, D. J. (1989). The endocrine response to dietary protein: the anabolic drive on growth. In Milk Proteins, pp. 4961 [Barth, C. A. and Schlimme, E., editors]. Darmstadt: Steinkoppf Verlag.CrossRefGoogle Scholar
Millward, D. J. (1993). The metabolic basis of protein requirements. In Protein Energy Interactions, pp. 3156 [Schrimshaw, N. S. and Schurch, B., editors]. Lausanne: Nestlé Foundation.Google Scholar
Millward, D. J., Davies, C. T. M., Halliday, D., Wolman, S. L., Matthews, D. & Rennie, M. J. (1982). The effect of exercise on protein metabolism in man as explored with stable isotopes. Federation Proceedings 41, 26862691.Google Scholar
Millward, D. J., Jackson, A. A., Price, G. & Rivers, J. P. W. (1989). Human amino acid and protein requirements: current dilemmas and uncertainties. Nutrition Research Reviews 2, 109132.CrossRefGoogle ScholarPubMed
Millward, D. J. & Rivers, J. (1988). The nutritional role of indispensible amino acids and the metabolic basis for their requirements. European Journal of Clinical Nutrition 42, 367393.Google ScholarPubMed
Newham, D. J., McPhail, G., Mills, K. R. & Edwards, R. H. T. (1983). Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of Neurological Science 61, 109122.CrossRefGoogle ScholarPubMed
Price, G. M., Halliday, D., Pacy, P. J., Quevedo, R. M. & Millward, D. J. (1994). Nitrogen homeostasis in man: 1. Influence of protein intake on the amplitude of diurnal cycling of body nitrogen. Clinical Science 86, 91102.CrossRefGoogle ScholarPubMed
Quevedo, R. M., Cox, M., Coward, W. A., Jones, D., Pacy, P., Smeaton, I., Thorpe, D. & Millward, D. J. (1991). Energy intake and expenditure in body builders. Proceedings of the Nutrition Society 50, 238A.Google Scholar
Quevedo, R. M., Price, G. M., Halliday, D., Pacy, P. J. & Millward, D. J. (1994). Nitrogen homeostasis in man: 3. Diurnal changes in nitrogen excretion, leucine oxidation and whole body leucine kinetics during a reduction from a high to a moderate protein intake. Clinical Science 86, 185193.CrossRefGoogle ScholarPubMed
Rennie, M. J., Babij, P., Sutton, J. R., Tonkins, W. J., Read, W. W., Ford, C. & Halliday, D. (1983). Effects of acute hypoxia on forearm leucine metabolism. Progress in Clinical and Biological Research 136, 317323.Google ScholarPubMed
Rennie, M. J., Bowtell, J. L. & Millward, D. J. (1994). Physical activity and protein metabolism. In Physical Activity, Fitness and Health [Bouchard, C., Shepherd, R. J. and Stephens, T., editors]. Champaign, Ill.: Human Kinetics Publishers (In the Press).Google Scholar
Rennie, M. J., Edwards, R. H. T., Davies, C. T. M., Krywawych, S., Halliday, D., Waterlow, J. C. & Millward, D. J. (1980). Protein and amino acid turnover during and after exercise. Biochemical Society Transactions 8, 499501.CrossRefGoogle ScholarPubMed
Rennie, M. J., Edwards, R. H. T., Krywawych, S., Davies, C. T. M., Halliday, D., Waterlow, J. C. & Millward, D. J. (1981 a). Effect of exercise on protein turnover in man. Clinical Science 61, 627639.CrossRefGoogle ScholarPubMed
Rennie, M. J., Halliday, D., Davies, C. T. M., Edwards, R. H. T., Krywawych, S., Millward, D. J. & Matthews, D. E. (1981 b). Exercise induced increase in leucine oxidation in man. In Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids, pp. 361366 [Walser, M. and Williamson, J. R., editors]. Amsterdam: Elsevier/North Holland.Google Scholar
Rundell, K. W., Tullson, P. C. & Terjung, R. L. (1993). AMP deaminase binding in rat skeletal muscle after high-intensity running. Journal of Applied Physiology 74, 20042006.CrossRefGoogle ScholarPubMed
Smith, J. K., Grisham, M. B., Granger, D. N. & Korthuis, R. J. (1989). Free radical defense mechanisms and neutrophil infiltration in postischemic skeletal muscle. American Journal of Physiology 256, H789H793.Google ScholarPubMed
Tarnopolsky, M. A., MacDougall, J. D. & Atkinson, S. A. (1988). Influence of protein intake and training status on nitrogen balance and lean body mass. Journal of Applied Physiology 64, 187193.CrossRefGoogle ScholarPubMed
Tarnopolsky, L. J., MacDougall, J. D., Atkinson, S. A., Tarnopolsky, M. A. & Sutton, J. R. (1990). Gender differences in substrate for endurance exercise. Journal of Applied Physiology 68, 302308.CrossRefGoogle ScholarPubMed
Torun, B. (1993). Influence of physical activity on energy and protein metabolism. In Protein Energy Interactions, pp. 229234 [Schrimshaw, N. S. and Schurch, B., editors]. Lausanne: Nestlé Foundation.Google Scholar
Wagenmakers, A. J. M., Beckers, E. J., Brouns, F., Kuipers, H., Soeters, P. B., van der Vusse, G. J. & Saris, W. H. M. (1991). Carbohydrate supplementation, glycogen depletion and amino acid metabolism during exercise. American Journal of Physiology 260, E833E890.Google ScholarPubMed
Wagenmakers, A. J. M., Brookes, J. H., Coakley, J. H., Reilly, T. & Edwards, R. H. T. (1989). Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. European Journal of Applied Physiology 59, 159167.CrossRefGoogle ScholarPubMed
Warhol, M. J., Siegel, A. J., Evans, W. J. & Silverman, L. M. (1985). Skeletal muscle injury and repair in marathon runners after competition. American Journal of Pathology 118, 331339.Google ScholarPubMed
Wasserman, D. H., Geer, R. J., Williams, P. E., Becker, T., Lacy, D. B. & Abumrad, N. N. (1991). Interaction of gut and liver in nitrogen metabolism during exercise. Metabolism 40, 307314.CrossRefGoogle ScholarPubMed
Wolfe, R. R. (1987). Does exercise stimulate protein breakdown in humans? Isotopic approaches to the problem. Medicine and Science in Sports and Exercise 19, 172178.CrossRefGoogle ScholarPubMed
Wolfe, R. R. (1993). Effects of physical activity on protein energy interactions: metabolic and nutritional considerations. In Protein Energy Interactions, pp. 221228 [Schrimshaw, N. S. and Schurch, B., editors]. Lausanne: Nestlé Foundation.Google Scholar
Wolfe, R. R., Wolfe, M. H., Nadel, E. R. & Shaw, J. H. F. (1984). Isotopic determination of amino acid–urea interactions in exercise in humans. Journal of Applied Physiology 56, 221229.CrossRefGoogle ScholarPubMed
Yan, Z., Biggs, R. B. & Booth, F. W. (1993). Insulin-like growth factor immunoreactivity increases in muscle after acute eccentric contractions. Journal of Applied Physiology 74, 410414.CrossRefGoogle ScholarPubMed
Yarasheski, K. E., Campbell, J. A., Smith, K., Rennie, M. J., Holloszy, J. O. & Bier, D. M. (1992). Effect of growth hormone and resistance exercise on muscle growth in young men. American Journal of Physiology 262, E261E267.Google ScholarPubMed