Tucker has outlined an application of principal components analysis to a set of learning curves, for the purpose of identifying meaningful dimensions of individual differences in learning tasks. Since the principal components are defined in terms of a statistical criterion (maximum variance accounted for) rather than a substantive one, it is typically desirable to rotate the components to a more interpretable orientation. “Simple structure” is not a particularly appealing consideration for such a rotation; it is more reasonable to believe that any meaningful factor should form a (locally) smooth curve when the component loadings are plotted against trial number. Accordingly, this paper develops a procedure for transforming an arbitrary set of component reference curves to a new set which are mutually orthogonal and, subject to orthogonality, are as smooth as possible in a well defined (least squares) sense. Potential applications to learning data, electrophysiological responses, and growth data are indicated.