The flame-sealed tube zinc reduction graphitization method has been successfully adapted and optimized for radiocarbon measurements on EnvironMICADAS in the Institute for Nuclear Research of the Hungarian Academy of Sciences, Hertelendi Laboratory of Environmental Studies (ATOMKI HLES). To reduce the cost and treatment time of producing graphite targets from samples of about 1 mg carbon content, we have omitted the titanium hydride (TiH2) reagent and used a decreased amount of zinc as the sole reductant in our new method. These changes have also helped to eliminate methane formation during the graphitization processes as well as to recover higher ion current at the same background level. These conditions have led to improved efficiency in the 14C measurements; furthermore, the instrument background level remained sufficiently low (<49,000 yr BP). After determining the optimum parameters of the new Zn graphitization method (2.5 mg Fe powder, 15.0 mg Zn powder, 10 hr graphitization at 550°C in heating block, reaction cells with reagent pretreated at 300°C for 1 hr), verification of the accuracy was carried out by the preparation and measurement of IAEA standard samples (C2, C6, C7, C8) with known 14C activity. The sensitivity of the method for gas contamination was tested and determined by comparing the results to measurements of reserved portions of previously processed real samples.