Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T23:49:05.593Z Has data issue: false hasContentIssue false

The lower bounds of non-real eigenvalues for singular indefinite Sturm–Liouville problems

Published online by Cambridge University Press:  22 December 2023

Fu Sun*
Affiliation:
School of Statistics and Data Science, Qufu Normal University, Qufu 273165, People's Republic of China (sfmath@163.com)
Rights & Permissions [Opens in a new window]

Abstract

The present paper deals with the non-real eigenvalues for singular indefinite Sturm–Liouville problems. The lower bounds on non-real eigenvalues for this singular problem associated with a special separated boundary condition are obtained.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction

In the present paper, we consider the eigenvalue problem

(1.1)\begin{equation} -(py')'+qy=\lambda w y,\quad [y,u_{{-}1}]({-}1)=0=[y,u_1](1), \end{equation}

where the functions $p,\, q,\,w$ are real-valued and $w$ changes sign on $(-1,\,1)$ and $u_{-1},\, u_{1}$ are the principal solutions of differential expression

(1.2)\begin{equation} -(py')'+qy=\lambda w y \end{equation}

at $-1,\, 1$ for $\lambda =0$, respectively. Such a problem is called indefinite and the indefinite nature, that non-real spectral points may appear, was noticed by Haupt [Reference Haupt11] and Richardson [Reference Richardson19] at the beginning of the last century and has attracted a lot of attention in the recent years, see [Reference Atkinson and Jabon1, Reference Behrndt and Trunk7, Reference Binding and Volkmer8, Reference Fleckinger and Mingarelli10, Reference Mingarelli14].

A priori bounds on non-real eigenvalues for indefinite Sturm–Liouville problems were raised in [Reference Mingarelli15] by Mingarelli and stressed by Kong et al. [Reference Kong, Möller, Wu and Zettl13]. Recently, the regular indefinite case of this problem was solved by Qi et al. in [Reference Behrndt, Chen, Philipp and Qi2, Reference Qi and Chen17, Reference Qi, Xie and Chen18, Reference Xie and Qi21]. For the singular indefinite Sturm–Liouville problems with limit-point type endpoints

(1.3)\begin{equation} (Af)(x):=\mathrm{sgn}(x)({-}f''(x)+V(x)f(x))=\lambda f(x), \quad x\in \mathbb{R}, \end{equation}

the authors in [Reference Behrndt, Katatbeh and Trunk3] provided sufficient conditions for the existence of non-real eigenvalues. The explicit bounds on the non-real eigenvalues of (1.3) were obtained in [Reference Behrndt, Philipp and Trunk4]. In [Reference Behrndt, Schmitz and Trunk5, Reference Behrndt, Schmitz and Trunk6], the authors not only estimated the absolute values of the non-real eigenvalues in terms of the $L^{1}\text {-norm}$ of the continuous potential, but also obtained the bounds on the imaginary parts and absolute values of these eigenvalues in terms of the $L^{1}\text {-norm}$ of the potential and its negative part. Recently in [Reference Sun and Qi20], the authors solved the estimates of absolute values on the non-real eigenvalues for the singular indefinite Sturm–Liouville eigenvalue problems with limit-circle type non-oscillation endpoints associated with a special self-adjoint boundary condition.

In the present paper, we will focus on the singular indefinite Sturm–Liouville eigenvalue problems with self-adjoint boundary conditions associated with principal solution at endpoints. The lower bounds of this eigenvalue problem are obtained under the some conditions. This paper is organized as follows: the preliminary knowledge and the main results, theorems 2.2 and 2.3, are stated in § 2 and their proofs are given in § 3.

2. Preliminary knowledge and main results

In this section, we give some basic knowledge for the singular differential equation (1.2) under the standard conditions that $p,\, q,\, w$ are real-valued functions satisfying

(2.1)\begin{equation} p>0, |w|>0\ \text{a.e. on}\ ({-}1,1),\ \frac{1}{p},w,q\in L^{1}_{\text{loc}}({-}1,1), \int^{1}_{{-}1}\left(\left|\frac{1}{p}\right|+|q|+|w|\right)=\infty \end{equation}

and $w$ changes its sign on $(-1,\,1)$ in the meaning that

\[ \mathrm{mes}\{x:w(x)>0\}>0, \quad \mathrm{mes}\{x:w(x)<0\}>0. \]

We first introduce some concepts. For fixed $\lambda \in \mathbb {R}$, a real solution $u(x)$ of (1.2) is called a principal solution at $1$ if there exists $c\in (-1,\,1)$ such that $u(x)\not =0, x\in (c,\,1),\, \ \int ^1_c 1/(pu^2)=\infty.$ A real solution $v(x)$ of (1.2) is called a non-principal solution at $1$ if there exists $c\in (-1,\,1)$ such that $v(x)\not =0$, $x\in (c,\,1),$ $\int ^1_c 1/(pv^2)<\infty.$ If $u$ and $v$ are principal and non-principal solutions at $1$, respectively, then $u(x) / v(x)\to 0$ as $x\to 1.$ (cf. [Reference Niessen and Zettl16] and [Reference Zettl22, Theorem 6.2.2]). In order to give the asymptotic behaviours of eigenfunctions at the endpoints, we assume that

(2.2)\begin{equation} \Upsilon (t): =\sup\limits_{{-}1< x<1}\left|\frac{1}{p(t)}\int^x_tq(s)\text{d} s\right|\in L^{1}({-}1,1), \quad \int^x_c\frac{1}{p(t)}\text{d} t\in L^2_{|w|}({-}1,1) \end{equation}

for some (and hence for all) $c\in (-1,\,1)$. Throughout this paper, the functions $p,\,q,\,w$ always satisfy (2.1) and (2.2). Then

Lemma 2.1 [Reference Sun and Qi20, Lemma 2.3] Assume that (2.2) holds, $u_1(\cdot )$ is a principal solution of (1.2) at $1$ for $\lambda =0$. Let $y$ be an eigenfunction of (1.1) corresponding to the eigenvalue $\lambda$. If either $\int ^1_{c} 1/p(t)\text {d} t=\infty$ or $\int ^1_{c} 1/p(t)\text {d} t<\infty,$ $q\in L^1(-1,\,1),$ then $y$ is bounded and

(2.3)\begin{equation} [y,u_{1}](1)=0 \Leftrightarrow (py')(x)y(x)\to 0\ \text{as}\quad x\to 1. \end{equation}

The similar conclusion holds for $x\to -1$.

The operator $S$ associated with the right-definite problem

(2.4)\begin{equation} \left\{\begin{array}{l} -(py')'(x)+q(x)y(x)=\lambda |w(x)|y(x), \\ {}[y,u_{{-}1}]({-}1)=0,\ [y,u_1](1)=0 \end{array}\right. \end{equation}

is defined as $Sy=\frac {1}{|w|}\tau y$ for $y\in D(S)$, where $\tau y := -(py')'(x)+q(x)y(x)$,

\[ D(S)=\{y\in L^{2}_{|w|}({-}1,1):\ y,py'\in AC_{loc}({-}1,1), \tau y/ |w|\in L^{2}_{|w|}({-}1,1),\ \mathcal{B}y=0\} \]

and $\mathcal {B}y=0:=\ [y,\,u_{-1}](-1)=0=[y,\,u_1](1)$. It follows from [Reference Kong, Kong, Wu and Zettl12] and [Reference Zettl22, Theorem 10.6.2, p.195] that the operator $S$ is self-adjoint in the Hilbert space $(L^2_{|w|},\, (\cdot,\,\cdot )_{|w|})$ and it has discrete spectrum consisting of an infinite number of eigenvalues $\{\mu _{n}: n\in \mathbb {N}:=\{1,\,2,\,\cdots \}\}$, which are all real, unbounded from above and bounded from below, i.e. $-\infty <\mu _{1}<\mu _{2}<\mu _{3}<\cdots \rightarrow +\infty.$

Let $K=(L^{2}_{|w|}(-1,\,1),\,[\cdot,\,\cdot ]_{w})$ be the Krein space with the indefinite inner product ${[f,\,g]_{w}}=\int ^{1}_{-1}w(x)f(x)\overline {g(x)}\,{\rm d}x,$ $f,\, g\in L^{2}_{|w|}(-1,\,1)$ and $J=\mathrm {sgn}\ w$ the fundamental symmetry operator. The operator $T$ in $K$ is defined as

\[ Ty=\frac{1}{w}\tau y,\quad y\in D(T)=D(S). \]

Then $S=JT$, $[Tf,\,g]_{w}=(Sf,\,g)_{|w|}$, $f,\, g\in D(T)$ and $T$ is a self-adjoint operator in $K$ [Reference Behrndt, Katatbeh and Trunk3, Reference Behrndt and Trunk7, Reference Čurgus and Langer9]. In the following, we denote the resolvent set of $S$ by $\rho (S)$.

Now, we state the lower bound result on $T$.

Theorem 2.2 Let $T$ and $S$ be defined as above. Suppose that $0\in \rho (S)$ and $S^{-1}$ is compact. Let $\mu ^+:=\min \ \sigma (S)\cap (0,\,\infty ),\, \mu ^{-}:= \min \ \left \{|\lambda |: \lambda \in \sigma (S)\cap (-\infty,\,0)\right \},$ where $\min \ \emptyset := \infty$. Then for each eigenvalue $\lambda$ of $T$ we have $|\lambda |\geq \min \ \{\mu ^+,\,\mu ^{-}\}.$

Moreover, if $\lambda$ corresponds to an eigenvector $\phi$ of $T$ with $[\phi,\,\phi ]_{w}=0$, then the following, in general stronger, estimate holds $|\lambda |^2\geq -\mu ^+\mu ^{-}.$

In order to give another result of the lower bound on $T$, we assume that $q_-(x)=\max \{0,\, -q(x)\}$ and for some $C,\,\ C_0,\,\ C_{1},\,\ C_2>0,\,\ x\in (-1,\,1)$

(2.5)\begin{align} & \left|\frac{1-x}{\sqrt{p(x)}}\int^x_{{-}1} q_-(t)\text{d} t\right|\leq C_{0},\quad \left|\frac{x+1}{\sqrt{p(x)}}\int^1_x q_-(t)\text{d} t\right|\leq C_{1}, \nonumber\\ & W(x)=\int^x_{{-}1} w(t)\text{d} t,\quad \frac{W(x)}{\sqrt{p(x)}}\leq C_2,\quad C=\sqrt{2}C_2. \end{align}

It is easy to verify that if $q\in L^{2}(-1,\,1),\,\ p(x)=1-x^2,\,\ w(x)=x$, then (2.5) holds. Let

(2.6)\begin{align} & \gamma_{t}:= \min \left\{\int^{t_0+t}_{t_0} |w(x)| \text{d} x: t\in ({-}1,1),\ t_0\in ({-}1,1) \right\},\nonumber\\ & \Delta_{w,1,n}=\|w\|_1 + C \left(\sqrt{ \Delta}+\sqrt{\Delta_{n}}\right),\quad \Delta= 2\int^1_{{-}1}q_{-}(t)\text{d} t + {8\alpha^2},\nonumber\\ & \Delta_n = 2\int^1_{{-}1}q_{-}(t)\text{d} t +{8\alpha^2}+ 2|\mu_{n}|\| w\|_1,\quad \alpha=\frac{C_{0}+C_{1}}{2}. \end{align}

With this notation, we give the following result.

Theorem 2.3 Assume that $\lambda$ and $\mu _n$ are the non-real eigenvalue of (1.1) and the $n$th eigenvalue of right-definite problem (2.4), respectively. Let $\mu _{h-1}<0<\mu _h$ for some positive integer $h\geq 2$, then the eigenvalue $\lambda$ satisfies

\[ |\lambda|^2 \geq \frac{ \mu_h \mu^2_{h-1} \gamma_\delta}{16 (\mu_h - \mu_{h-1})} \left(\sum^{h-1}_{n=1} \frac{ \Delta^2_{w,1,n} }{ \gamma_{\delta_n}}\right)^{{-}1}. \]

3. The proofs of theorems 2.2 and 2.3

In order to prove theorems 2.2 and 2.3, we prepare some lemmas. The following lemma is the estimates of $\|\sqrt {p}\phi '\|_2$, where $\phi$ is an eigenfunction of (1.1) corresponding to a non-real eigenvalue $\lambda$. That is $\mathcal {B}\phi =0$ and

(3.1)\begin{equation} -(p\phi')'+q \phi=\lambda w \phi. \end{equation}

Since problem (1.1) is a linear system and $\phi$ is continuous, we can choose $\phi$ satisfies $\max \{|\phi (x)|:x\in [-1,\,1]\}=1$ in the following discussion.

Lemma 3.1 Let $\lambda$ and $\phi$ be defined as above. Then

(3.2)\begin{equation} \int^1_{{-}1} w|\phi|^2=0,\quad \int^1_{{-}1} p|\phi'|^2 \leq \Delta, \end{equation}

where $\Delta$ is given by (2.6).

Proof. It follows from $\mathcal {B}\phi =0$ and lemma 2.1 that $\phi$ is bounded and satisfies $(p\phi '\phi )(x)\to 0$ as $x\to -1$ or $1.$ Multiplying both sides of (3.1) by $\overline {\phi }$ and integrating over the interval $[a,\,b]$, then

(3.3)\begin{equation} \int^1_{{-}1} p|\phi'|^2+\int^1_{{-}1} q|\phi|^2=\lambda\int^1_{{-}1} w|\phi|^2. \end{equation}

From $\operatorname {Im}\lambda \not =0$ and (3.3) one sees that $\int ^1_{-1} w|\phi |^2=0$, and hence

(3.4)\begin{equation} \int^1_{{-}1} p|\phi'|^2+ \int^1_{{-}1} q|\phi|^2 =0. \end{equation}

Set

\[ Q(x)=\int^x_{{-}1} q_-(t)\text{d} t-\frac{x+1}{2}\int^1_{{-}1} q_-(t)\text{d} t \]

Then one can verify that

\begin{align*} & Q({-}1)=0=Q(1),\ Q'(x)=q_-(x)-\frac{1}{2}\int^1_{{-}1}q_{-}(t)\text{d} t\ \text{a.e.} \ x\in ({-}1,1)\quad \text{and}\\ & |Q(x)|\leq\left|\frac{1-x}{2}\int^x_{{-}1} q_-(t)\text{d} t\right| +\left|\frac{x+1}{2}\int^1_x q_-(t)\text{d} t\right| \leq \frac{\sqrt{p(x)}}{2}(C_{0}+C_{1}) = \alpha\sqrt{p(x)}. \end{align*}

As a result, this together with (3.4) and Cauchy–Schwarz inequality yields that

(3.5)\begin{align} \int^1_{{-}1} q_{-}|\phi|^2 & =\int^1_{{-}1} \left(Q'+\frac{1}{2}\int^1_{{-}1}q_{-}\right)|\phi|^2\nonumber\\ & \leq \int^1_{{-}1}q_{-} -2\operatorname{Re}\left(\int^1_{{-}1} Q\phi'\overline{\phi}\right)\nonumber\\ & \leq \int^1_{{-}1}q_{-} + \frac{1}{2}\int^1_{{-}1}p|\phi'|^2 + {4\alpha^2}. \end{align}

It follows from (3.4), (3.5) and $q=q_+-q_-$, $q_{\pm } =\max \{0,\, \pm q \}$ that

\[ \int^1_{{-}1} p|\phi'|^2 ={-}\int^1_{{-}1} q|\phi|^2 \leq \int^1_{{-}1} q_{-}|\phi|^2 \leq \int^1_{{-}1}q_{-}+\frac{1}{2}\int^1_{{-}1} p|\phi'|^2 + {4\alpha^2}. \]

So the inequalities in (3.2) holds immediately.

Similarly with the argument of lemma 3.1, we give the estimates of $\|\sqrt {p}\psi '_n\|_2$, where $\psi _n$ is the eigenfunction that satisfies $\max \{|\psi _n(x)|: x\in [-1,\,1]\}=1$ corresponding to the $n$th eigenvalue $\mu _n$ of (2.4).

Lemma 3.2 Suppose that $\mu _n$ and $\psi _n$ are defined as above. Then $\int ^1_{-1} p|\psi _{n}'|^2 \leq \Delta _{n},$ where $\Delta _n$ is given by (2.6).

Proof. Let $\mu _n$ and $\psi _n$ be defined as above, then

(3.6)\begin{equation} -(p\psi'_{n})'+q\psi_{n}=\mu_{n}|w|\psi_{n},\quad \mathcal{B}\psi_{n}=0. \end{equation}

From $\mathcal {B}\psi _{n}=0$ and lemma 2.1 that $\psi _{n}$ is bounded and satisfies $(p\psi _{n}'\psi _{n})(x)\to 0$, $x\to -1$ or $1$. Multiplying both sides of (3.6) by $\psi _{n}$ and integrating over the interval $(-1,\,1)$, we have

(3.7)\begin{equation} \int^1_{{-}1} p|\psi_{n}'|^2+\int^1_{{-}1} q|\psi_{n}|^2 =\mu_{n} \int^1_{{-}1} |w| |\psi_{n}|^2. \end{equation}

With the similar argument in (3.5), one can prove that

\[ \int^1_{{-}1} q_-|\psi_{n}|^2 \leq \int^1_{{-}1}q_{-} +\frac{1}{2}\int^1_{{-}1}p|\psi'_{n}|^2 + {4\alpha^2}. \]

This together with (3.7) and $q=q_+-q_-$ yields that

\begin{align*} \int^1_{{-}1} p|\psi_{n}'|^2 & \leq \int^1_{{-}1}q_-|\psi_{n}|^2+\mu_{n}\int^1_{{-}1}|w||\psi_{n}|^2\\ & \leq \int^1_{{-}1}q_{-} +\frac{1}{2}\int^1_{{-}1}p|\psi'_{n}|^2 + {4\alpha^2}+ |\mu_{n}| \|w\|_1 . \end{align*}

And hence

\[ \int^1_{{-}1} p|\psi_{n}'|^2 \leq 2\int^1_{{-}1}q_{-} +{8\alpha^2}+2|\mu_{n}|\|w\|_1. \]

This completes the proof of lemma 3.2.

For any $\varepsilon >0$, let

(3.8)\begin{align} \delta& = \sup\left\{\min\left\{\tilde{\delta}, \frac{1}{2}\right\}: \int_{I} \frac{1}{p}\leq \frac{1}{4\Delta}, \text{for any}\ I\subset [{-}1/2,1/2]\ \text{with length}\ \tilde{\delta}\right\} \end{align}
(3.9)\begin{align} \delta_n& = \sup\left\{\min\left\{\tilde{\delta}, \frac{1}{2}\right\}: \int_{I} \frac{1}{p}\leq \frac{1}{4\Delta_{n}}, \text{for any}\ I\subset [{-}1/2,1/2]\ \text{with length}\ \tilde{\delta}\right\} \end{align}

From the definition of $\delta$ in (3.8), one sees that $\delta \in (0,\,1/2]$ and $\int _{I} \frac {1}{p}\leq \frac {1}{4\Delta }$ for any interval $I\subset [-1/2,\, 1/2]$ with length $\delta$. The conclusion holds for $\delta _n$.

Lemma 3.3 Let $\lambda$ and $\phi$ be defined as above. Then there exists an interval $\tilde {I}\subset (-1,\,1)$ with $\delta$ in length, such that $|\phi (\cdot )|\geq 1/2$ on $\tilde {I}$.

Proof. For any interval $I\subset [-1/2,\, 1/2]$ with length $\delta$, it follows from Cauchy–Schwarz inequality and lemma 3.1 that

(3.10)\begin{equation} \left(\int_{I}|\phi'|\right)^2\leq \int_{I}\frac{1}{p}\int^1_{{-}1}p|\phi'|^2\leq \frac{1}{4}. \end{equation}

Since $\max \{|\phi (x)|:x\in [-1,\,1]\}=1$, there exists $x_{0}\in [-1/2,\, 1/2]$ such that $|\phi (x_{0})|\leq 1.$ Hence, for $x\in (-1,\,1)$ and $|x-x_{0}|\leq \delta$,

\[ \Big| |\phi(x)|-1\Big| \leq \Big| |\phi(x)|-|\phi(x_{0})| \Big| \leq |\phi(x)-\phi(x_{0})| =\left|\int^x_{x_{0}}\phi'(t)\,{\rm d}t\right|\leq \frac{1}{2} \]

by (3.10), and hence

\[ |\phi(x)|\geq \frac{1}{2}\quad \text{on}\quad \tilde{I} = [-\delta+x_{0},x_{0}]\quad\text{or}\quad [x_{0},x_{0}+\delta ]. \]

From $\delta \in (0,\, 1/2]$ one sees that $(-1,\,1)$ contains at least one such interval $\tilde {I}$.

Similar with lemma 3.3 we have

Lemma 3.4 Assume that $\mu _n$ is an eigenvalue of (2.4) and $\psi _n$ is the corresponding eigenfunction. Then there exists an interval $\tilde {I}_{n}\subset (-1,\,1)$ with $\delta _n$ in length, such that $|\psi _n(\cdot )|\geq 1/ 2$ on $\tilde {I}_{n}$.

Applying the above lemmas we now prove the main results of theorems 2.2 and 2.3.

The proof of theorem 2.2 Let $\mu _{n}$ be the $n$th eigenvalue of right-definite problem (2.4) and $\psi _{n}$ the corresponding eigenfunction. From $\psi _{n}\in D(S)$ is linearly independent, one sees that $\{\psi _n: n\geq 1\}$ forms an orthonormal system. Let $\phi$ be an eigenfunction of $T$ associated with eigenvalue $\lambda$ such that $\int ^1_{-1} |w| |\phi |^2=1$. Since $S$ is a self-adjoint operator and $S^{-1}$ is compact, we can expand $\phi$ via the orthonormal system $\psi _{n}$, i.e. $\phi =\sum \limits ^{\infty }_{n=1}(\phi,\,\psi _{n})_{|w|} \psi _{n}.$ Then from $\int ^1_{-1} |w||\phi |^2=1$, we have

(3.11)\begin{equation} \sum^{\infty}_{n=1}|(\phi,\psi_{n})_{|w|}|^2=1,\quad \sum^{\infty}_{n=1}|(\phi,\psi_{n})_{|w|}|^2\mu^2_{n} =|\lambda|^2. \end{equation}

It follows from $\mu ^+ =\min \ \sigma (S)\cap (0,\,\infty )$ and $\mu ^{-} = \min \ \{|\lambda |: \lambda \in \sigma (S)\cap (-\infty,\,0)\}$ that $|\mu _{n}|\geq \min \ \{\mu ^+,\,\mu ^{-}\}$ for $n\geq 1$. This together with (3.11) yields that

\[ |\lambda| \geq \min\ \{\mu^+,\mu^{-}\}. \]

If $\lambda$ corresponds to an eigenvector $\phi$ of $T$ with $[\phi,\,\phi ]_{w}=0$, then it follows from (3.11) that

(3.12)\begin{equation} \sum^{\infty}_{n=1} \left|(\phi,\psi_{n})_{|w|}\right|^2 \left(\mu_{n}-\frac{1}{2}(\mu^+{+}\mu^{-})\right)^2 =|\lambda|^2+\frac{1}{4}(\mu^+{+}\mu^{-})^2. \end{equation}

From $|\mu _{n}| \geq \min \ \{\mu ^+,\,\mu ^{-}\}$, one sees that

(3.13)\begin{equation} \left(\mu_{n}-\frac{1}{2}(\mu^+{+}\mu^{-})\right)^2-\frac{1}{4}(\mu^+{-}\mu^{-})^2 =(\mu_{n}-\mu^+)(\mu_{n}-\mu^{-})\geq0. \end{equation}

From (3.11), (3.12) and (3.13), we have that

\begin{align*} |\lambda|^{2}& =\left(\mu_{n}-\frac{1}{2}(\mu^+{+}\mu^{-})\right)^2 -\frac{1}{4}(\mu^+{+}\mu^{-})^2\\ & =\left(\mu_{n}-\frac{1}{2}(\mu^+{+}\mu^{-})\right)^2 -\frac{1}{4}(\mu^+{-}\mu^{-})^2 -\mu^+\mu^{-} \geq{-}\mu^+\mu^{-}, \end{align*}

which completes the proof of theorem 2.2.

The proof of theorem 2.3 Let $\mu _n$ be the $n$th eigenvalue of (2.4) and $\psi _n$ the corresponding eigenfunction such that $\max \{|\psi _n(x)|:x\in [-1,\,1]\}=1,\,\ n\geq 1$. It follows from lemmas 3.3, 3.4 and the definition of $\gamma _{t}$ in (2.6) that

(3.14)\begin{align} & \|\phi\|_{|w|}^2=\int^1_{{-}1} |w| |\phi|^2 \geq \int_{I} |w| |\phi|^2 \geq \int_{I} \frac{|w|}{4} \geq \frac{\gamma_{\delta}}{4}, \end{align}
(3.15)\begin{align} & \|\psi_n\|_{|w|}^2=\int^1_{{-}1} |w| |\psi_n|^2 \geq \int_{I_n} |w| |\psi_n|^2 \geq \int_{I_n} \frac{|w|}{4} \geq \frac{\gamma_{\delta_n}}{4},\ n\geq 1. \end{align}

From the definition of $W(x)=\int ^x_{-1} w(t)\text {d} t$, one sees that

\[ [\phi, \psi_n]_w = \int^1_{{-}1} w\phi \overline{\psi_n} =\int^1_{{-}1} W' \phi \overline{\psi_n} = \phi(1) \overline{\psi_n}(1) \int^1_{{-}1} w- \int^1_{{-}1} W (\phi' \overline{\psi_n}+\phi \overline{\psi'_n}). \]

This together with (2.5) and lemmas 3.1 and 3.2 that

\begin{align*} \Big|[\phi, \psi_n]_w \Big| & \leq \int^1_{{-}1} |w|+ \left| \int^1_{{-}1} W (\phi' \overline{\psi_n} +\phi \overline{\psi'_n}) \right|\\ & \leq \|w\|_1 + \left|\int^1_{{-}1} \frac{W}{\sqrt{p}} \sqrt{p}\phi' \overline{\psi_n}+ \int^1_{{-}1} \frac{W}{\sqrt{p}} \phi \sqrt{p}\overline{\psi'_n}\right|\\ & \leq \|w\|_1 + C_2 \left(\int^1_{{-}1} |\sqrt{p}\phi' \overline{\psi_n}|+ \int^1_{{-}1} |\phi \sqrt{p}\overline{\psi'_n}|\right)\\ & \leq \|w\|_1 + C \left(\sqrt{ \Delta}+\sqrt{\Delta_{n}}\right)=\Delta_{w,1,n}. \end{align*}

Furthermore, for $n\geq 1$ we get

(3.16)\begin{equation} \lambda [\phi, \psi_n]_w=[T\phi, \psi_n]_w=(S\phi, \psi_n)_{|w|} =(\phi, S\psi_n)_{|w|}=\mu_n (\phi, \psi_n)_{|w|}. \end{equation}

If we set

\[ \Lambda_n=(\phi,\psi_{n})_{|w|} =\frac{(\phi, \psi_n)_{|w|}}{\|\phi\|_{|w|} \|\psi_n\|_{|w|}}, \]

then (3.14)–(3.16) give that

(3.17)\begin{equation} |\Lambda_n|\leq \frac{4 |\lambda| \Big|[\phi, \psi_n]_w \Big|} {|\mu_{n}| \sqrt{\gamma_\delta \gamma_{\delta_n}}} \leq \frac{4 |\lambda| \Delta_{w,1,n}} {|\mu_{n}| \sqrt{\gamma_\delta \gamma_{\delta_n}}}. \end{equation}

From $\sum \limits ^{\infty }_{n=1}|(\phi,\,\psi _{n})_{|w|}|^2\mu _{n}=\lambda [\phi,\,\phi ]_w$ and $[\phi,\,\phi ]_{w}=\int ^1_{-1} w|\phi |^2=0$ in lemma 3.1, we have

\[ 0=\lambda[\phi,\phi]_{w}= \sum^{\infty}_{n=1} \left|(\phi,\psi_{n})_{|w|}\right|^2 \mu_{n} =\sum^{\infty}_{n=1} |\Lambda_n|^2 \mu_{n} = \sum^{h-1}_{n=1} |\Lambda_n|^2 \mu_{n} +\sum^{\infty}_{n=h} |\Lambda_n|^2 \mu_{n}, \]

and hence $- \sum \limits ^{h-1}\limits _{n=1} |\Lambda _n|^2 \mu _{n}= \sum \limits ^{\infty }\limits _{n=h} |\Lambda _n|^2 \mu _{n}$. Thus, by (3.11) and $\mu _{h-1}<0<\mu _h$, $h\geq 2$,

(3.18)\begin{align} & \sum^{h-1}_{n=1} |\Lambda_n|^2 (\mu_{h}- \mu_n) = \sum^{h-1}_{n=1} |\Lambda_n|^2 \mu_{h} + \sum^{\infty}_{n=h} |\Lambda_n|^2 \mu_n \nonumber\\ & \quad = \sum^{h}_{n=1} |\Lambda_n|^2 \mu_{h} + \sum^{\infty}_{n=h+1} |\Lambda_n|^2 \mu_n \geq \sum^{h}_{n=1} |\Lambda_n|^2 \mu_{h} + \sum^{\infty}_{n=h+1} |\Lambda_n|^2 \mu_h \nonumber\\ & \quad = \sum^{\infty}_{n=1} |\Lambda_n|^2 \mu_h= \mu_h. \end{align}

By $\mu _h>0,\, \mu _n\leq \mu _{h-1}<0,\, 1\leq n \leq h-1,$ we have

\[ \frac{1}{\mu^2_n} \leq \frac{1}{\mu^2_{h-1}},\quad \frac{\mu_h}{\mu_n^2}\leq \frac{\mu_h}{\mu^2_{h-1}},\quad \frac{-1}{\mu_n}\leq \frac{-1}{\mu_{h-1}}= \frac{-\mu_{h-1}}{\mu^2_{h-1}}. \]

This together with the assumption that $\mu _1\leq \cdots \leq \mu _{h-1} <0< \mu _h,\, h\geq 2$ yields that

(3.19)\begin{equation} \frac{\mu_h- \mu_n}{\mu_n^2}= \frac{\mu_h}{\mu_n^2} - \frac{1}{\mu_n } \leq \frac{\mu_h}{\mu^2_{h-1}} - \frac{\mu_{h-1}}{\mu^2_{h-1}} = \frac{\mu_h - \mu_{h-1}}{\mu^2_{h-1}}, \quad 1\leq n\leq h-1. \end{equation}

Hence, by (3.17)–(3.19) we have

\begin{align*} \mu_h & = \sum^{h-1}_{n=1} |\Lambda_n|^2 (\mu_h\!- \!\mu_n) \leq \sum^{h-1}_{n=1} \frac{16 |\lambda|^2 \Delta^2_{w,1,n} (\mu_h\!-\! \mu_n) } {|\mu_{n}|^2 \gamma_\delta \gamma_{\delta_n}} =\frac{16 |\lambda|^2 }{\gamma_\delta} \sum^{h-1}_{n=1} \frac{ \mu_h- \mu_n } {|\mu_{n}|^2 \gamma_{\delta_n}}\Delta^2_{w,1,n} \\ & \leq \frac{16 |\lambda|^2 }{\gamma_\delta} \sum^{h-1}_{n=1} \frac{ \mu_h - \mu_{h-1} } {\mu^2_{h-1} \gamma_{\delta_n}}\Delta^2_{w,1,n} =\frac{16 |\lambda|^2 (\mu_h - \mu_{h-1}) }{\mu^2_{h-1} \gamma_\delta} \sum^{h-1}_{n=1} \frac{ \Delta^2_{w,1,n} }{ \gamma_{\delta_n}}. \end{align*}

Therefore,

\[ |\lambda|^2 \geq \frac{ \mu_h \mu^2_{h-1} \gamma_\delta}{16 (\mu_h - \mu_{h-1})} \left(\sum^{h-1}_{n=1} \frac{ \Delta^2_{w,1,n} }{ \gamma_{\delta_n}}\right)^{{-}1}. \]

This completes the proof of theorem 2.3.

Acknowledgements

The author is deeply grateful to the editors and reviewers for a careful reading and very helpful suggestions which improved and strengthened the presentation of this manuscript. The author would like to thank Professor Jiangang Qi (Shandong University) and Professor Zhaowen Zheng (Guangdong Polytech Normal University) for their generous help. This research was partially supported by the National Natural Science Foundation of China (grant: 12101356), Natural Science Foundation of Shandong Province (grant: ZR2021QA065) and China Postdoctoral Science Foundation (grant: 2023M732023).

References

Atkinson, F. and Jabon, D.. Indefinite Sturm-Liouville problems. In ‘Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems Vol.I’, (ed. H. Kaper, M. K. Kwong, and A. Zettle) (Argonne National Laboratory, Argonne, IL, 1984), pp. 31–45.Google Scholar
Behrndt, J., Chen, S., Philipp, F. and Qi, J.. Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouvilleproblems. Proc. Roy. Soc. Edinburgh. A. 144 (2014), 11131126.CrossRefGoogle Scholar
Behrndt, J., Katatbeh, Q. and Trunk, C.. Non-real eigenvalues of singular indefinite Sturm-Liouville operators. Proc. Amer. Math. Soc. 137 (2009), 37973806.CrossRefGoogle Scholar
Behrndt, J., Philipp, F. and Trunk, C.. Bounds on the non-real spectrum of differential operators with indefinite weights. Math. Ann. 357 (2013), 185213.CrossRefGoogle Scholar
Behrndt, J., Schmitz, P. and Trunk, C.. Bounds on the non-real spectrum of a singular indefinite Sturm-Liouville operator on $\mathbb {R}$. Proc. Appl. Math. Mech. 16 (2016), 881882.CrossRefGoogle Scholar
Behrndt, J., Schmitz, P. and Trunk, C.. Spectral bounds for singular indefinite Sturm-Liouville operators with $L^1\text {-potentials},$ arXiv:1709.04994v2 [math.SP] 18 Dec 2017.CrossRefGoogle Scholar
Behrndt, J. and Trunk, C.. On the negative squares of indefinite Sturm-Liouville operators. J. Differ. Equ. 238 (2007), 491519.CrossRefGoogle Scholar
Binding, P. and Volkmer, H.. Eigencurves for two-parameter Sturm-Liouville equations. SIAM Rev. 38 (1996), 2748.CrossRefGoogle Scholar
Čurgus, B. and Langer, H.. A Krein space approach to symmetric ordinary differential operators with an indefinite weight functions. J. Differ. Equ. 79 (1989), 3161.CrossRefGoogle Scholar
Fleckinger, J. and Mingarelli, A. B., On the eigenfunctions of non-definite elliptic operators. In Differential Equations Vol. 92, (ed. I. W. Knowles and R. T. Lewis) (North-Holland, The Netherlands, 1984), pp. 219–227.CrossRefGoogle Scholar
Haupt, O.. Über eine Methode zum Beweis von Oszillationstheoremen. Math. Ann. 76 (1915), 67104.CrossRefGoogle Scholar
Kong, L., Kong, Q., Wu, H. and Zettl, A.. Regular approximations of singular Sturm-Liouville problems with limit-circle endpoints. Result. Math. 45 (2004), 274292.CrossRefGoogle Scholar
Kong, Q., Möller, M., Wu, H. and Zettl, A.. Indefinite Sturm-Liouville problems. Proc. Roy. Soc. Edinburgh. Sect. A. 133 (2003), 639652.CrossRefGoogle Scholar
Mingarelli, A. B., Indefinite Sturm-Liouville problems, Lecture Notes in Math., Vol. 964, (Springer, Berlin, New York, 1982, pp. 519–528).CrossRefGoogle Scholar
Mingarelli, A. B., A survey of the regular weighted Sturm-Liouville problem – the non-definite case, e-print arXiv:1106.6013v1 [math.CA], 2011.Google Scholar
Niessen, H. D. and Zettl, A.. Singular Sturm-Liouville problem: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. 64 (1992), 545578.CrossRefGoogle Scholar
Qi, J. and Chen, S.. A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems. J. Spectr. Theory. 4 (2014), 5363.CrossRefGoogle Scholar
Qi, J., Xie, B. and Chen, S.. The upper and lower bounds on non-real eigenvalues of indefinite Strum-Liouville problems. Pro. Amer. Math. Soc. 144 (2016), 547559.CrossRefGoogle Scholar
Richardson, R. G. D.. Theorems of oscillation for two linear differential equations of second order with two parameters. Trans. Amer. Math. Soc. 13 (1912), 2234.CrossRefGoogle Scholar
Sun, F. and Qi, J.. A priori bounds and existence of non-real eigenvalues for singular indefinite Sturm-Liouville problems with limit-circle type endpoints. Proc. Roy. Soc. Edinburgh A. 150 (2020), 26072619.CrossRefGoogle Scholar
Xie, B. and Qi, J.. Non-real eigenvalues of indefinite Sturm-Liouville problems. J. Differ. Equ. 8 (2013), 22912301.CrossRefGoogle Scholar
Zettl, A., Sturm-Liouville Theory, Math. Surveys Monogr., Vol. 121, (Amer. Math. Soc., Providence, RI, 2005).Google Scholar