Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T05:07:21.341Z Has data issue: false hasContentIssue false

On the brink: The demise of the item in visual search moves closer

Published online by Cambridge University Press:  24 May 2017

Johan Hulleman
Affiliation:
Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom. johan.hulleman@manchester.ac.ukhttps://www.research.manchester.ac.uk/portal/johan.hulleman.html
Christian N. L. Olivers
Affiliation:
Department of Experimental and Applied Psychology, Institute for Brain & Behaviour Amsterdam, VU University, NL-1081 BT Amsterdam, The Netherlands. c.n.l.olivers@vu.nlhttp://www.vupsy.nl/staff-members/christian-olivers/

Abstract

We proposed to abandon the item as conceptual unit in visual search and adopt a fixation-based framework instead. We treat various themes raised by our commentators, including the nature of the Functional Visual Field and existing similar ideas, alongside the importance of items, covert attention, and top-down/contextual influences. We reflect on the current state of, and future directions for, visual search.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allport, D. A. (1980) Attention and performance. In: Cognitive psychology, ed. Claxton, G., pp. 112–53. Routledge & Kegan Paul.Google Scholar
Anderson, J. R. & Lebiere, C. (1998) The atomic components of thought. Erlbaum.Google Scholar
Braisby, N. & Gellatly, A. (2012) Cognitive psychology, second edition. Oxford University Press.Google Scholar
Broadbent, D. E. (1958) Perception and communication. Pergamon Press.CrossRefGoogle Scholar
Buetti, S., Cronin, D. A., Madison, A. M., Wang, Z. & Lleras, A. (2016) Towards a better understanding of parallel visual processing in human vision: Evidence for exhaustive analysis of visual information. Journal of Experimental Psychology: General 145(6):672707.CrossRefGoogle ScholarPubMed
Buschman, T. J. & Miller, E. K. (2009) Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron 63:386–96. doi: 10.1016/j.neuron.2009.06.020.CrossRefGoogle ScholarPubMed
de Groot, F., Huettig, F. & Olivers, C. N. (2016) When meaning matters: The temporal dynamics of semantic influences on visual attention. Journal of Experimental Psychology: Human Perception and Performance 42:180–96. doi: 10.1037/xhp0000102.Google ScholarPubMed
Di Lollo, V. (2012) The feature-binding problem is an ill-posed problem. Trends in Cognitive Sciences 16:317–21. doi: 10.1016/j.tics.2012.04.007.CrossRefGoogle ScholarPubMed
Duncan, J. (1984) Selective attention and the organization of visual information. Journal of Experimental Psychology: General 113:501–17. doi: 10.1037/0096-3445.113.4.501.CrossRefGoogle ScholarPubMed
Duncan, J. & Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. doi: 10.1037/0033-295X.96.3.433.CrossRefGoogle ScholarPubMed
Duncan, J., Ward, R. & Shapiro, K. (1994) Direct measurement of attentional dwell time in human vision. Nature 369:313–15. doi: 10.1038/369313a0.CrossRefGoogle ScholarPubMed
Eckstein, M. P. (2011) Visual search: A retrospective. Journal of Vision 11(5):14. doi: 10.1167/11.5.14.CrossRefGoogle ScholarPubMed
Eckstein, M. P., Thomas, J. P., Palmer, J. & Shimozaki, S. S. (2000) A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics 62:425–51. doi: 10.3758/BF03212096.CrossRefGoogle ScholarPubMed
Egly, R., Driver, J. & Rafal, R. D. (1994) Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General 123:161–77. doi: 10.1037//0096-3445.123.2.161.CrossRefGoogle ScholarPubMed
Ehinger, K. A. & Rosenholtz, R. (2016) A general account of peripheral encoding also predicts scene perception performance. Journal of Vision 16(2):13.CrossRefGoogle ScholarPubMed
Eimer, M. & Grubert, A. (2014) Spatial attention can be allocated rapidly and in parallel to new visual objects. Current Biology 24:193–98. doi: 10.1016/j.cub.2013.12.001.CrossRefGoogle ScholarPubMed
Engel, F. L. (1971) Visual conspicuity, directed attention and retinal locus. Vision Research 11:563–76. doi: 10.1016/0042-6989(71)90077-0.CrossRefGoogle ScholarPubMed
Engel, F. L. (1977) Visual conspicuity, visual search and fixation tendencies of the eye. Vision Research 17:95108. doi: 10.1016/0042-6989(77)90207-3.CrossRefGoogle ScholarPubMed
Eysenck, M. W. & Keane, M. T. (2015) Cognitive psychology. A student's handbook, seventh edition. Psychology Press.CrossRefGoogle Scholar
Findlay, J. M. & Gilchrist, I. D. (1998) Eye guidance and visual search. In: Eye guidance in reading, driving and scene perception, ed. Underwood, G., pp. 295312. Elsevier.CrossRefGoogle Scholar
Findlay, J. M. & Gilchrist, I. D. (2001) Visual attention: The active vision perspective. In: Vision and attention, ed. Jenkins, M. & Harris, L., pp. 85105. Springer.Google Scholar
Findlay, J. M. & Gilchrist, I. D. (2003) Active vision: The psychology of looking and seeing. Oxford University Press.CrossRefGoogle Scholar
Findlay, J. M. & Gilchrist, I. D. (2005) Eye guidance and visual search. In: Cognitive Processes in Eye Guidance, ed. Underwood, G., pp. 259–81. Oxford University Press.CrossRefGoogle Scholar
Friedman, H. S., Zhou, H. & Von der Heydt, R. (2003) The coding of uniform colour figures in monkey visual cortex. Journal of Physiology 548:593613. doi: 10.1113/jphysiol.2002.033555.CrossRefGoogle ScholarPubMed
Geisler, W. S. & Chou, K. L. (1995) Separation of low-level and high-level factors in complex tasks: Visual search. Psychological Review 102:356–78. doi: 10.1037/0033-295X.102.2.356.CrossRefGoogle ScholarPubMed
Goldstein, E. B. (2014) Sensation and perception, ninth edition. Wadsworth Cengage.Google Scholar
Goldstein, E. B. (2015) Cognitive psychology: Connecting mind, research and everyday experience, fourth edition. Wadsworth Cengage.Google Scholar
Grubert, A. & Eimer, M. (2015) Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance 41:86101. doi: 10.1037/xhp0000019.Google ScholarPubMed
He, S., Cavanagh, P. & Intriligator, J. (1996) Attentional resolution and the locus of visual awareness. Nature 383:334–37. doi: 10.1038/383334a0.CrossRefGoogle ScholarPubMed
Hochberg, J. (1982) How big is a stimulus? In: Contemporary theory and research in visual perception, ed. Beck, J., pp. 191217. Erlbaum.Google Scholar
Hochstein, S. & Ahissar, M. (2002) View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron 36:791804. doi: 10.1016/S0896-6273(02)01091-7.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160:106–54.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1977) Functional architecture of macaque visual cortex. Proceedings of the Royal Society Series B: Biological Sciences 198:159. doi: 10.1098/rspb.1977.0085.Google Scholar
Hulleman, J. (2009) No need for inhibitory tagging of locations in visual search. Psychonomic Bulletin and Review 16:116–20. doi: 10.3758/PBR.16.1.116.CrossRefGoogle ScholarPubMed
Hulleman, J. (2010) Inhibitory tagging in visual search: Only in difficult search are items tagged individually. Vision Research 50:2069–79. doi: 10.1016/j.visres.2010.07.017.CrossRefGoogle ScholarPubMed
Hulleman, J. & Olivers, C. N. L. (2014) Search through complex motion displays does not break down under spatial memory load. Psychonomic Bulletin and Review 21:652–58. doi: 10.3758/s13423-013-0537-6.CrossRefGoogle Scholar
Humphreys, G. W. & Müller, H. J. (1993) SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology 25:43110. doi: 10.1006/cogp.1993.1002.CrossRefGoogle Scholar
Ikeda, M. & Takeuchi T. (1975) Influence of foveal load on the functional visual field. Perception and Psychophysics 18:255–60. doi: 10.3758/BF03199371.CrossRefGoogle Scholar
Keshvari, S. & Rosenholtz, R. (2016) Pooling of continuous features provides a unifying account of crowding. Journal of Vision 16(3):39, 115. doi: 10.1167/16.3.39.CrossRefGoogle ScholarPubMed
Kraiss, K. F. & Knäeuper, A. (1982) Using visual lobe area measurements to predict visual search performance. Human Factors 24:673–82.CrossRefGoogle ScholarPubMed
LaBerge, D. & Brown, V. (1986) Variations in size of the visual field in which targets are presented: An attentional range effect. Perception and Psychophysics 40:188200. doi: 10.3758/BF03203016.CrossRefGoogle ScholarPubMed
Lamme, V. A. F. & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences 23:571–79. doi: 10.1016/S0166-2236(00)01657-X.CrossRefGoogle ScholarPubMed
Lavie, N. (1995) Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance 21(3):451–68. doi: 10.1037/0096-1523.21.3.451.Google ScholarPubMed
Lavie, N. & Tsal, Y. (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Perception and Psychophysics 56:183–97. doi: 10.3758/BF03213897.CrossRefGoogle Scholar
Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J. & Zehetleitner, M. (2016) Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance 42(6):821–36. doi: 10.1037/xhp0000156.Google ScholarPubMed
Lupyan, G. (2008) The conceptual grouping effect: Categories matter (and named categories matter more). Cognition 108:566–77. doi: 10.1016/j.cognition.2008.03.009.CrossRefGoogle Scholar
McConkie, G. W. & Rayner, K. (1975) The span of the effective stimulus during a fixation in reading. Perception and Psychophysics 17:578–86. doi: 10.3758/BF03203972.CrossRefGoogle Scholar
Meyer, D. E. & Kieras, D. E. (1997) A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review 104(1):365. doi: 10.1037/0033-295X.104.1.3.CrossRefGoogle ScholarPubMed
Moran, R., Zehetleitner, M., Müller, H. J. & Usher, M. (2013) Competitive guided search: Meeting the challenge of benchmark RT-distributions. Journal of Vision 13(8):24. doi: 10.1167/13.8.24.CrossRefGoogle ScholarPubMed
Norman, D. A. & Shallice, T. (1980) Attention to action: Willed and automatic control of behavior (Technical Report No. 99). Center for Human Information Processing.Google Scholar
Norman, D. A. & Shallice, T. (1986) Attention to action: Willed and automatic control of behavior. In: Consciousness and self-regulation, ed. Davidson, R. J., Schwartz, G. E. & Shapiro, D., pp. 118. Plenum Press.Google Scholar
Palmer, J., Verghese, P. & Pavel, M. (2000) The psychophysics of visual search. Vision Research 40:1227–68. doi: 10.1016/S0042-6989(99)00244-8.CrossRefGoogle ScholarPubMed
Piras, A. & Vickers, J. N. (2011) The effect of fixation transitions on quiet eye duration and performance in the soccer penalty kick: Instep versus inside kicks. Cognitive Processing 12:245–55. doi: 10.1007/s10339-011-0406-z.CrossRefGoogle ScholarPubMed
Põder, E. (2007) Effect of colour pop-out on the recognition of letters in crowding conditions. Psychological Research 71:641–45. doi: 10.1007/s00426-006-0053-7.CrossRefGoogle ScholarPubMed
Pomplun, M. (2007) Advancing area activation towards a general model of eye movements in visual search. In: Integrated models of cognitive systems, ed. Gray, W. D., pp. 120–31. Oxford University Press.CrossRefGoogle Scholar
Prinz, W. (1977) Memory control of visual search. In: Attention and performance VI, ed. Dornič, S., pp. 441–62. Erlbaum.Google Scholar
Reisberg, D. (2013) Cognition: Exploring the science of the mind, 5th edition. W. W. Norton & Company.CrossRefGoogle Scholar
Rosenholtz, R., Huang, J. & Ehinger, K. A. (2012a) Rethinking the role of top-down attention in vision: Effects attributable to a lossy representation in peripheral vision. Frontiers in Psychology 3(13):115. doi: 10.3389/fpsyg.2012.00013.CrossRefGoogle ScholarPubMed
Rosenholtz, R., Huang, J., Raj, A., Balas, B. J. & Ilie, L. (2012b) A summary statistic representation in peripheral vision explains visual search. Journal of Vision 12(4):14, 117. doi: 10.1167/12.4.14.CrossRefGoogle ScholarPubMed
Seymour, K., Clifford, C. W. G., Logothetis, N. K. & Bartels, A. (2009) The coding of color, motion, and their conjunction in the human visual cortex. Current Biology 19:177–83. doi: 10.1016/j.cub.2008.12.050.CrossRefGoogle ScholarPubMed
Seymour, K., Clifford, C. W. G., Logothetis, N. K. & Bartels, A. (2010) Coding and binding of color and form in visual cortex. Cerebral Cortex 20:1946–54. doi: 10.1093/cercor/bhp265.CrossRefGoogle ScholarPubMed
Shipp, S., Adams, D. L., Moutoussis, K. & Zeki, S. (2009) Feature binding in the feedback layers of area V2. Cerebral Cortex 19:2230–39. doi: 10.1093/cercor/bhn243.CrossRefGoogle ScholarPubMed
Song, C., Schwarzkopf, D. S., Kanai, R. & Rees, G. (2015) Neural population tuning links visual cortical anatomy to human visual perception. Neuron 85:641–56. doi: 10.1016/j.neuron.2014.12.041.CrossRefGoogle ScholarPubMed
Sternberg, R. J. (2017) Cognitive psychology, seventh edition. Wadsworth Cengage.Google Scholar
Theeuwes, J., Godijn, R. & Pratt, J. (2004) A new estimate of attentional dwell time. Psychonomic Bulletin and Review 11:6064. doi: 10.3758/BF03206461.CrossRefGoogle ScholarPubMed
Theeuwes, J., Mathôt, S. & Grainger, J. (2013) Exogenous object-centered attention. Attention Perception, and Psychophysics 75:812–18. doi: 10.3758/s13414-013-0459-4.CrossRefGoogle ScholarPubMed
Theeuwes, J., Mathôt, S. & Kingstone, A. (2010) Object-based eye movements: The eyes prefer to stay within the same object. Attention Perception, and Psychophysics 72(3):1221. doi: 10.3758/APP.72.3.597.CrossRefGoogle ScholarPubMed
Treisman, A. & Gormican, S. (1988) Feature analysis in early vision: Evidence from search asymmetries. Psychological Review 95:1548.CrossRefGoogle ScholarPubMed
Treisman, A. M. & Gelade, G. (1980) A feature-integration theory of attention. Cognitive Psychology 12:97136. doi: 10.1016/0010-0285(80)90005-5.CrossRefGoogle ScholarPubMed
Verghese, P. (2001) Visual search and attention: A signal detection approach. Neuron 31:523–35. doi: 10.1016/S0896-6273(01)00392-0.CrossRefGoogle Scholar
Ward, J. (2015) The student's guide to cognitive neuroscience, 3rd edition. Psychology Press.CrossRefGoogle Scholar
Williams, D. E., Reingold, E. M., Moscovitch, M. & Behrmann, M. (1997) Patterns of eye movements during parallel and serial visual search tasks. Canadian Journal of Experimental Psychology 51:151–64. doi: 10.1037/1196-1961.51.2.151.CrossRefGoogle ScholarPubMed
Williams, L. J. (1982) Cognitive load and the functional field of view. Human Factors 24:683–92.CrossRefGoogle ScholarPubMed
Wolfe, J. M. (1998b) What can 1 million trials tell us about visual search? Psychological Science 9:3339. doi: 10.1111/1467-9280.00006.CrossRefGoogle Scholar
Wolfe, J. M., Alvarez, G. A. & Horowitz, T. S. (2000) Attention is fast but volition is slow. Nature 406:691. doi: 10.1038/35021132.CrossRefGoogle ScholarPubMed
Wolfe, J. M. & Horowitz, T. S. (2004) What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5:495501. doi: 10.1038/nrn1411.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Kluender, K. R., Levi, D. M. Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., Lederman, S. J. & Merfeld, D. M. (2015) Sensation & perception, 4th edition. Sinauer Associates.Google Scholar
Woodman, G. F. & Luck, S. J. (1999) Electrophysiological measurement of rapid shifts of attention during visual search. Nature 400:867–69. doi: 10.1038/23698.CrossRefGoogle ScholarPubMed
Woodman, G. F. & Luck, S. J. (2003) Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance 29:121–38. doi: 10.1037/0096-1523.29.1.121.Google ScholarPubMed
Young, A. H. & Hulleman, J. (2013) Eye movements reveal how task difficulty moulds visual search. Journal of Experimental Psychology: Human Perception and Performance 39:168–90.Google ScholarPubMed
Zelinsky, G. J. & Sheinberg, D. L. (1995) Why some search tasks take longer than others: Using eye movements to redefine reaction times. In: Eye movement research: Mechanism, processes and applications, ed. Findlay, J. M., Walker, R. & Kentridge, R. W., pp. 325–36. Elsevier Science. doi: 10.1016/S0926-907X(05)80028-5.CrossRefGoogle Scholar
Zelinsky, G. J. & Sheinberg, D. L. (1997) Eye movements during parallel-serial visual search. Journal of Experimental Psychology: Human Perception and Performance 23:244–62. doi: 10.1037/0096-1523.23.1.244.Google ScholarPubMed
Zelinsky, G. J., Peng, Y., Berg, A. C. & Samaras, D. (2013) Modeling guidance and recognition in categorical search: Bridging human and computer object detection. Journal of Vision 13(3):30, 120. doi: 10.1167/13.3.30.CrossRefGoogle ScholarPubMed
Zelinsky, G. J., Rao, R. P. N., Hayhoe, M. M. & Ballard, D. H. (1997) Eye movements reveal the spatiotemporal characteristics of visual search. Psychological Science 8:448–53. doi: 10.1111/j.1467-9280.1997.tb00459.x.CrossRefGoogle Scholar
Zhang, X., Huang, J., Yigit-Elliott, S. & Rosenholtz, R. (2015) Cube search, revisited. Journal of Vision 15(3):9, 118. doi: 10.1167/15.3.9.CrossRefGoogle Scholar