Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:15:40.892Z Has data issue: false hasContentIssue false

Chances and challenges for an active visual search perspective

Published online by Cambridge University Press:  24 May 2017

Sven Ohl
Affiliation:
Bernstein Center for Computational Neuroscience & Department of Psychology, Humboldt University of Berlin, Berlin 10099, Germany. sven.ohl@bccn-berlin.demartin.rolfs@hu-berlin.dehttp://www.rolfslab.de/http://www.rolfslab.de/
Martin Rolfs
Affiliation:
Bernstein Center for Computational Neuroscience & Department of Psychology, Humboldt University of Berlin, Berlin 10099, Germany. sven.ohl@bccn-berlin.demartin.rolfs@hu-berlin.dehttp://www.rolfslab.de/http://www.rolfslab.de/

Abstract

Using fixations as the fundamental unit of visual search is an appealing gear change in a paradigm that has long dominated attention research. To truly inform theories of search, however, additional challenges must be faced, including (1) an empirically motivated definition of fixation in the presence of fixational saccades and (2) the biases and limitations of transsaccadic perception and memory.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bays, P. M. & Husain, M. (2008) Dynamic shifts of limited working memory resources in human vision. Science 321(5890):851–54. doi: 10.1126/science.1158023.Google Scholar
Cavanagh, P., Hunt, A. R., Afraz, A. & Rolfs, M. (2010) Visual stability based on remapping of attention pointers. Trends in Cognitive Science 14(4):147–53.Google Scholar
Engbert, R. & Kliegl, R. (2003) Microsaccades uncover the orientation of covert attention. Vision Research 43(9):1035–45. doi: 10.1016/S0042-6989(03)00084-1.Google Scholar
Hafed, Z. M. (2011) Mechanisms for generating and compensating for the smallest possible saccades. European Journal of Neuroscience 33(11):2101–13. doi: 10.1111/j.1460-9568.2011.07694.x.Google Scholar
Hafed, Z. M. & Clark, J. J. (2002) Microsaccades as an overt measure of covert attention shifts. Vision Research 42(22):2533–45.CrossRefGoogle ScholarPubMed
Hafed, Z. M., Goffart, L. & Krauzlis, R. J. (2009) A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323(5916):940–43.Google Scholar
Irwin, D. E. (1991) Information integration across saccadic eye movements. Cognitive Psychology 23(3):420–56.CrossRefGoogle ScholarPubMed
Jonikaitis, D., Szinte, M., Rolfs, M. & Cavanagh, P. (2013) Allocation of attention across saccades. Journal of Neurophysiology 109(5):1425–34.Google Scholar
Ko, H.-K., Poletti, M. & Rucci, M. (2010) Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neuroscience 13(12):1549–53. doi: 10.1038/nn.2663.Google Scholar
Mirpour, K. & Bisley, J. W. (2012) Anticipatory remapping of attentional priority across the entire visual field. Journal of Neuroscience 32(46):16449–57.Google Scholar
Ohl, S., Brandt, S. A. & Kliegl, R. (2011) Secondary (micro-)saccades: The influence of primary saccade end point and target eccentricity on the process of postsaccadic fixation. Vision Research 51(23–24):2340–47. doi: 10.1016/j.visres.2011.09.005.Google Scholar
Rolfs, M. (2009) Microsaccades: Small steps on a long way. Vision Research 49(20):2415–41. doi: 10.1016/j.visres.2009.08.010.Google Scholar
Rolfs, M. (2015) Attention in active vision. Perception 44(8–9):900–19.Google Scholar
Rolfs, M., Jonikaitis, D., Deubel, H. & Cavanagh, P. (2011) Predictive remapping of attention across eye movements. Nature Neuroscience 14(2):252–56. doi: 10.1038/nn.2711.Google Scholar
Rolfs, M., Kliegl, R. & Engbert, R. (2008) Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision 8(11):123.CrossRefGoogle Scholar
Wurtz, R. H. (2008) Neuronal mechanisms of visual stability. Vision Research 48(20):2070–89. doi: 10.1016/j.visres.2008.03.021.Google Scholar
Yuval-Greenberg, S., Merriam, E. P. & Heeger, D. J. (2014) Spontaneous microsaccades reflect shifts in covert attention. Journal of Neuroscience 34(41):13693–700. doi: 10.1523/JNEUROSCI.0582-14.2014.CrossRefGoogle ScholarPubMed