Ces dernières années, de nombreuses recherches ont été consacrées à l’étude de la structure extrémale de la somme de deux convexes; signalons, par exemple, les travaux de Bair-Fourneau-Jongmans [3], Edelstein-Fesmire [5], Husain-Tweddle [6], Jongmans [7], Klee [8] et Roy [9]. Dans cette direction, Klee [8] a obtenu ce résultat très intéressant, qui a d’ailleurs été généralisé plus tard par Jongmans [7]: dans un espace euclidien ℝd, tout point extrême z de la somme d’un convexe fermé A et d’un convexe compact B s’écrit de façon unique comme la somme d’un point extrême xz de A et d’un point extrême yz de B; de plus, tout point extrême x de A livre un point extrême y de B tel que z = x + y soit un point extrême de A + B. Par contre, il peut exister des points extrêmes de B dont la somme avec un point extrême de A n’est jamais un point extrême de A + B; cette constatation conduit au problème: est-il possible de caractériser l’ensemble des yz?