We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We start by showing how to approximate unitary and bounded self-adjoint operators by operators in finite dimensional spaces. Using ultraproducts we give a precise meaning for the approximation. In this process we see how the spectral measure is obtained as an ultralimit of counting measures that arise naturally from the finite dimensional approximations. Then we see how generalized distributions can be interpreted in the ultraproduct. Finally we study how one can calculate kernels of operators K by calculating them in the finite dimensional approximations and how one needs to interpret Dirac deltas in the ultraproduct in order to get the kernels as propagators $\langle x_{1}|K|x_{0}\rangle $.
We show that every definable subset of an uncountably categorical pseudofinite structure has pseudofinite cardinality which is polynomial (over the rationals) in the size of any strongly minimal subset, with the degree of the polynomial equal to the Morley rank of the subset. From this fact, we show that classes of finite structures whose ultraproducts all satisfy the same uncountably categorical theory are polynomial R-mecs as well as N-dimensional asymptotic classes, where N is the Morley rank of the theory.
The Lovász local lemma (LLL) is a technique from combinatorics for proving existential results. There are many different versions of the LLL. One of them, the lefthanded local lemma, is particularly well suited for applications to two player games. There are also constructive and computable versions of the LLL. The chief object of this thesis is to prove an effective version of the lefthanded local lemma and to apply it to effectivise constructions of non-repetitive sequences.
The second goal of this thesis is to categorize some classes of cohesive powers. We completely describe both the isomorphism types of cohesive powers of equivalence structures and injection structures, as well as clarify the relationship between these cohesive powers and their original structures. We also describe the finite condensation of cohesive powers of computable copies of the integers as a linear order by cohesive sets whose complement are computably enumerable.
Finally, we investigate the possibility of decomposing problems in the Weihrauch degrees into a product of first order part and second order part. We give a preliminary result in this direction.
Ultrafilters play a significant role in model theory to characterize logics having various compactness and interpolation properties. They also provide a general method to construct extensions of first-order logic having these properties. A main result of this paper is that every class $\Omega $ of uniform ultrafilters generates a $\Delta $-closed logic ${\mathcal {L}}_\Omega $. ${\mathcal {L}}_\Omega $ is $\omega $-relatively compact iff some $D\in \Omega $ fails to be $\omega _1$-complete iff ${\mathcal {L}}_\Omega $ does not contain the quantifier “there are uncountably many.” If $\Omega $ is a set, or if it contains a countably incomplete ultrafilter, then ${\mathcal {L}}_\Omega $ is not generated by Mostowski cardinality quantifiers. Assuming $\neg 0^\sharp $ or $\neg L^{\mu }$, if $D\in \Omega $ is a uniform ultrafilter over a regular cardinal $\nu $, then every family $\Psi $ of formulas in ${\mathcal {L}}_\Omega $ with $|\Phi |\leq \nu $ satisfies the compactness theorem. In particular, if $\Omega $ is a proper class of uniform ultrafilters over regular cardinals, ${\mathcal {L}}_\Omega $ is compact.
Two first-order logic theories are definitionally equivalent if and only if there is a bijection between their model classes that preserves isomorphisms and ultraproducts (Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example 2, uncountably many pairs of definitionally inequivalent theories are given such that their model categories are concretely isomorphic via bijections that preserve ultraproducts in the model categories up to isomorphism. Based on these results, we settle several conjectures of Barrett, Glymour and Halvorson.
We introduce prime products as a generalization of ultraproducts for positive logic. Prime products are shown to satisfy a version of Łoś’s Theorem restricted to positive formulas, as well as the following variant of the Keisler Isomorphism Theorem: under the generalized continuum hypothesis, two models have the same positive theory if and only if they have isomorphic prime powers of ultrapowers.
There is a Turing functional $\Phi $ taking $A^\prime $ to a theory $T_A$ whose complexity is exactly that of the jump of A, and which has the property that $A \leq _T B$ if and only if $T_A \trianglelefteq T_B$ in Keisler’s order. In fact, by more elaborate means and related theories, we may keep the complexity at the level of A without using the jump.
We introduce and prove the consistency of a new set theoretic axiom we call the Invariant Ideal Axiom. The axiom enables us to provide (consistently) a full topological classification of countable sequential groups, as well as fully characterize the behavior of their finite products.
We also construct examples that demonstrate the optimality of the conditions in IIA and list a number of open questions.
Several different versions of the theory of numerosities have been introduced in the literature. Here, we unify these approaches in a consistent frame through the notion of set of labels, relating numerosities with the Kiesler field of Euclidean numbers. This approach allows us to easily introduce, by means of numerosities, ordinals and their natural operations, as well as the Lebesgue measure as a counting measure on the reals.
This paper introduces three model-theoretic constructions for generalized Epstein semantics: reducts, ultramodels and $\textsf {S}$-sets. We apply these notions to obtain metatheoretical results. We prove connective inexpressibility by means of a reduct, compactness by an ultramodel and definability theorem which states that a set of generalized Epstein models is definable iff it is closed under ultramodels and $\textsf {S}$-sets. Furthermore, a corollary concerning definability of a set of models by a single formula is given on the basis of the main theorem and the compactness theorem. We also provide an example of a natural set of generalized Epstein models which is undefinable. Its undefinability is proven by means of an $\textsf {S}$-set.
The thesis pseudofinite structures and counting dimensions is about the model theory of pseudofinite structures with the focus on groups and fields. The aim is to deepen our understanding of how pseudofinite counting dimensions can interact with the algebraic properties of underlying structures and how we could classify certain classes of structures according to their counting dimensions. Our approach is by studying examples. We treat three classes of structures: The first one is the class of H-structures, which are generic expansions of existing structures. We give an explicit construction of pseudofinite H-structures as ultraproducts of finite structures. The second one is the class of finite difference fields. We study properties of coarse pseudofinite dimension in this class, show that it is definable and integer-valued and build a partial connection between this dimension and transformal transcendence degree. The third example is the class of pseudofinite primitive permutation groups. We generalise Hrushovski’s classical classification theorem for stable permutation groups acting on a strongly minimal set to the case where there exists an abstract notion of dimension, which includes both the classical model theoretic ranks and pseudofinite counting dimensions. In this thesis, we also generalise Schlichting’s theorem for groups to the case of approximate subgroups with a notion of commensurability.
Answering a question of Cifú Lopes, we give a syntactic characterization of those continuous sentences that are preserved under reduced products of metric structures. In fact, we settle this question in the wider context of general structures as introduced by the second author.
In connection with the work of Anscombe, Macpherson, Steinhorn and the present author in [1] we investigate the notion of a multidimensional exact class (R-mec), a special kind of multidimensional asymptotic class (R-mac) with measuring functions that yield the exact sizes of definable sets, not just approximations. We use results about smooth approximation [24] and Lie coordinatization [13] to prove the following result (Theorem 4.6.4), as conjectured by Macpherson: For any countable language $\mathcal {L}$ and any positive integer d the class $\mathcal {C}(\mathcal {L},d)$ of all finite $\mathcal {L}$-structures with at most d 4-types is a polynomial exact class in $\mathcal {L}$, where a polynomial exact class is a multidimensional exact class with polynomial measuring functions.
We shall define a general notion of dimension, and study groups and rings whose interpretable sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for fields and domains, and show that a pseudofinite
$\widetilde {\mathfrak M}_c$
-group of finite positive dimension contains a finite-by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble subgroup of dimension 2.
We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A3| ≤ O(|A|), or small alternation, |AA−1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.
It is known that there exists a first-order sentence that holds in a finite group if and only if the group is soluble. Here it is shown that the corresponding statements with ‘solubility’ replaced by ‘nilpotence’ and ‘perfectness’, among others, are false.
These facts present difficulties for the study of pseudofinite groups. However, a very weak form of Frattini’s theorem on the nilpotence of the Frattini subgroup of a finite group is proved for pseudofinite groups.
In this article we explore some properties of H-structures which are introduced in [2]. We describe a construction of H-structures based on one-dimensional asymptotic classes which preserves pseudofiniteness. That is, the H-structures we construct are ultraproducts of finite structures. We also prove that under the assumption that the base theory is supersimple of SU-rank one, there are no new definable groups in H-structures. This improves the corresponding result in [2].
We adapt the classical notion of building models by games to the setting of continuous model theory. As an application, we study to what extent canonical operator algebras are enforceable models. For example, we show that the hyperfinite II1 factor is an enforceable II1 factor if and only if the Connes Embedding Problem has a positive solution. We also show that the set of continuous functions on the pseudoarc is an enforceable model of the theory of unital, projectionless, abelian $\text{C}^{\ast }$-algebras and use this to show that it is the prime model of its theory.