We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
Liu [‘On a congruence involving q-Catalan numbers’, C. R. Math. Acad. Sci. Paris358 (2020), 211–215] studied congruences of the form $\sum _{k=0}^{n-1} q^k\mathcal {C}_k$ modulo the cyclotomic polynomial $\Phi _n(q)^2$, provided that $n\equiv \pm 1\pmod 3$. Apparently, the case $n\equiv 0\pmod 3$ has been missing from the literature. Our primary purpose is to fill this gap. In addition, we discuss a certain fascinating link to Dirichlet character sum identities.
Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, Acta Arith.115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting $a_1,\ldots ,a_{(q-1)/2}$ be all the nonzero squares in the finite field $\mathbb {F}_q$ containing q elements with $2\nmid q$, we give the explicit value of the determinant $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$. In particular, if $q=p$ is a prime greater than $3$, then
The K-theoretic Schur P- and Q-functions $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $ may be concretely defined as weight-generating functions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and Naruse specified families of dual K-theoretic Schur P- and Q-functions $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ via a Cauchy identity involving $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $. They conjectured that the dual power series are weight-generating functions for certain shifted plane partitions. We prove this conjecture. We also derive a related generating function formula for the images of $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ under the $\omega $ involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second author. Using these results, we verify a conjecture of Ikeda and Naruse that the $G\hspace {-0.2mm}Q$-functions are a basis for a ring.
We characterize totally symmetric self-complementary plane partitions (TSSCPP) as bounded compatible sequences satisfying a Yamanouchi-like condition. As such, they are in bijection with certain pipe dreams. Using this characterization and the recent bijection of Gao–Huang between reduced pipe dreams and reduced bumpless pipe dreams, we give a bijection between alternating sign matrices and TSSCPP in the reduced, 1432-avoiding case. We also give a different bijection in the 1432- and 2143-avoiding case that preserves natural poset structures on the associated pipe dreams and bumpless pipe dreams.
We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if $p(n)$ denotes the number of unrestricted partitions of a positive integer n (and $p(0)=1$, $p(n)=0$ for $n<0$), then for all nonnegative integers m,
Iterating the skew RSK correspondence discovered by Sagan and Stanley in the late 1980s, we define deterministic dynamics on the space of pairs of skew Young tableaux $(P,Q)$. We find that these skew RSK dynamics display conservation laws which, in the picture of Viennot’s shadow line construction, identify generalizations of Greene invariants. The introduction of a novel realization of $0$-th Kashiwara operators reveals that the skew RSK dynamics possess symmetries induced by an affine bicrystal structure, which, combined with connectedness properties of Demazure crystals, leads to the linearization of the time evolution. Studying asymptotic evolution of the dynamics started from a pair of skew tableaux $(P,Q)$, we discover a new bijection $\Upsilon : (P,Q) \mapsto (V,W; \kappa , \nu )$. Here, $(V,W)$ is a pair of vertically strict tableaux, that is, column strict fillings of Young diagrams with no condition on rows, with the shape prescribed by the Greene invariant, $\kappa $ is an array of nonnegative weights and $\nu $ is a partition. An application of this construction is the first bijective proof of Cauchy and Littlewood identities involving q-Whittaker polynomials. New identities relating sums of q-Whittaker and Schur polynomials are also presented.
We study some combinatorial properties of higher-dimensional partitions which generalize plane partitions. We present a natural bijection between d-dimensional partitions and d-dimensional arrays of nonnegative integers. This bijection has a number of important applications. We introduce a statistic on d-dimensional partitions, called the corner-hook volume, whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable formulas whose specializations give analogues of various formulas known for plane partitions. We also introduce higher-dimensional analogues of dual stable Grothendieck polynomials which are quasisymmetric functions and whose specializations enumerate higher-dimensional partitions of a given shape. Finally, we show probabilistic connections with a directed last passage percolation model in $\mathbb {Z}^d$.
In this paper, we mainly prove the following conjectures of Z.-W. Sun (J. Number Theory133 (2013), 2914–2928): let $p>2$ be a prime. If $p=x^2+3y^2$ with $x,y\in \mathbb {Z}$ and $x\equiv 1\ ({\rm {mod}}\ 3)$, then
If a sequence indexed by nonnegative integers satisfies a linear recurrence without constant terms, one can extend the indices of the sequence to negative integers using the recurrence. Recently, Cigler and Krattenthaler showed that the negative version of the number of bounded Dyck paths is the number of bounded alternating sequences. In this paper, we provide two methods to compute the negative versions of sequences related to moments of orthogonal polynomials. We give a combinatorial model for the negative version of the number of bounded Motzkin paths. We also prove two conjectures of Cigler and Krattenthaler on reciprocity between determinants.
We consider the family $\mathrm {MC}_d$ of monic centered polynomials of one complex variable with degree $d \geq 2$, and study the map $\widehat {\Phi }_d:\mathrm {MC}_d\to \widetilde {\Lambda }_d \subset \mathbb {C}^d / \mathfrak {S}_d$ which maps each $f \in \mathrm {MC}_d$ to its unordered collection of fixed-point multipliers. We give an explicit formula for counting the number of elements of each fiber $\widehat {\Phi }_d^{-1}(\bar {\unicode{x3bb} })$ for every $\bar {\unicode{x3bb} } \in \widetilde {\Lambda }_d$ except when the fiber $\widehat {\Phi }_d^{-1}(\bar {\unicode{x3bb} })$ contains polynomials having multiple fixed points. This formula is not a recursive one, and is a drastic improvement of our previous result [T. Sugiyama. The moduli space of polynomial maps and their fixed-point multipliers. Adv. Math.322 (2017), 132–185] which gave a rather long algorithm with some induction processes.
Suppose that m drivers each choose a preferred parking space in a linear car park with n spots. In order, each driver goes to their chosen spot and parks there if possible, and otherwise takes the next available spot if it exists. If all drivers park successfully, the sequence of choices is called a parking function. Classical parking functions correspond to the case $m=n$.
We investigate various probabilistic properties of a uniform parking function. Through a combinatorial construction termed a parking function multi-shuffle, we give a formula for the law of multiple coordinates in the generic situation $m \lesssim n$. We further deduce all possible covariances: between two coordinates, between a coordinate and an unattempted spot, and between two unattempted spots. This asymptotic scenario in the generic situation $m \lesssim n$ is in sharp contrast with that of the special situation $m=n$.
A generalization of parking functions called interval parking functions is also studied, in which each driver is willing to park only in a fixed interval of spots. We construct a family of bijections between interval parking functions with n cars and n spots and edge-labeled spanning trees with $n+1$ vertices and a specified root.
For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality
$r-k$
. However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers.
Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.
We investigate the sum of the parts in all the partitions of n into distinct parts and give two infinite families of linear inequalities involving this sum. The results can be seen as new connections between partitions and divisors.
We provide a generalised Laplace expansion for the permanent function and, as a consequence, we re-prove a multinomial Vandermonde convolution. Some combinatorial identities are derived by applying special matrices to the expansion.
We discuss a truncated identity of Euler and present a combinatorial proof of it. We also derive two finite identities as corollaries. As an application, we establish two related $q$-congruences for sums of $q$-Catalan numbers, one of which has been proved by Tauraso [‘$q$-Analogs of some congruences involving Catalan numbers’, Adv. Appl. Math.48 (2012), 603–614] by a different method.
We prove that the number of right ideals of codimension $n$ in the algebra of noncommutative Laurent polynomials in two variables over the finite field ${{\mathbb{F}}_{q}}$ is equal to
where the sum is over all indecomposable permutations in ${{S}_{n+1}}$ and where inv $\left( \theta \right)$ stands for the number of inversions of $\theta $.