Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T10:29:12.923Z Has data issue: false hasContentIssue false

DIVISIBILITY OF SUMS OF PARTITION NUMBERS BY MULTIPLES OF 2 AND 3

Published online by Cambridge University Press:  22 December 2023

NAYANDEEP DEKA BARUAH*
Affiliation:
Department of Mathematical Sciences, Tezpur University, Napaam 784028, Assam, India
Rights & Permissions [Opens in a new window]

Abstract

We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if $p(n)$ denotes the number of unrestricted partitions of a positive integer n (and $p(0)=1$, $p(n)=0$ for $n<0$), then for all nonnegative integers m,

$$ \begin{align*}\sum_{k=0}^\infty p(24m+23-\omega(-2k))+\sum_{k=1}^\infty p(24m+23-\omega(2k))\equiv 0~ (\text{mod}~144),\end{align*} $$

where $\omega (k)=k(3k+1)/2$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

A partition $\lambda =(\lambda _1, \lambda _2, \ldots , \lambda _k)$ of a positive integer n is a nonincreasing sequence of positive integers that sum to n, that is, $\lambda _1+\lambda _2+\cdots +\lambda _k=n$ . The numbers $\lambda _j$ are known as the parts of $\lambda $ . The partition function $p(n)$ enumerates the partitions of n. For example, $p(4)=5$ , since there are 5 partitions of 4, namely,

$$ \begin{align*}4, \quad 3+1, \quad 2+2,\quad 2+1+1 \quad\text{and}\quad 1+1+1+1+1.\end{align*} $$

By convention, we take $p(0)=1$ and $p(n)=0$ if n is not a nonnegative integer.

The generating function of $p(n)$ , found by Euler, is given by

(1.1) $$ \begin{align} \sum_{n=0}^\infty p(n)q^n= \dfrac{1}{(q;q)_\infty} \end{align} $$

(see [Reference Andrews3]), where for complex numbers a and q with $|q|<1$ , the standard q-product $(a;q)_\infty $ is defined by

$$ \begin{align*} (a;q)_\infty:=\prod_{j=0}^{\infty}(1-a q^j). \end{align*} $$

Work on the arithmetic properties of $p(n)$ started when Ramanujan [Reference Ramanujan20], [Reference Ramanujan21, pages 210–213] discovered his famous congruences for $p(n)$ : for every nonnegative integer n,

$$ \begin{align*} p(5n + 4) &\equiv 0~ (\text{mod}~ 5),\\ p(7n + 5) &\equiv 0~ (\text{mod}~ 7),\\ p(11n + 6) &\equiv 0~ (\text{mod}~ 11). \end{align*} $$

Since then, these congruences have been studied and generalised extensively in many directions. Ono [Reference Ono18] proved that for every prime $M \geq 5$ there exist infinitely many nonnested arithmetic progressions $An+B$ such that

$$ \begin{align*}p(An+B)\equiv 0~(\text{mod}~M).\end{align*} $$

Ahlgren [Reference Ahlgren1] extended this result for arbitrary integers M with $\text {gcd}(6,M)=1$ . However, for the primes $2$ and $3$ , we have different results on the divisibility of the partition function. Subbarao [Reference Subbarao24] conjectured that every arithmetic progression contains infinitely many integers n for which $p(n)$ is odd as well as infinitely many integers m for which $p(m)$ is even. The conjecture has been settled by Ono [Reference Ono17] and Radu [Reference Radu19]. Suppose that A and B are integers with $A>B\geq 0$ . If $\nu =2$ or $3$ , then Radu [Reference Radu19] proved that there are infinitely many integers n such that

$$ \begin{align*}p(An+B)\not\equiv0~(\text{mod}~\nu).\end{align*} $$

Recently, Ballantine and Merca [Reference Ballantine and Merca5] explored the parity of sums of partition numbers at certain places in arithmetic progressions. In particular, they proved that if

$$ \begin{align*}(a, b) \in \{(6, 8), (8, 12), (12, 24), (15, 40), (16, 48), (20, 120), (21, 168)\},\end{align*} $$

then

$$ \begin{align*} \sum_{ak+1\,\text{square}} p(n-k) \equiv 1~ (\text{mod}~2) \quad\text{if~and~only~if}\ bn + 1 ~\text{is~a~square} \end{align*} $$

(see [Reference Hong and Zhang12, Reference Hu, Yao and Zhao13] for further results of this type).

In this paper, we show that certain sums of partition numbers are divisible by multiples of 2 and 3. Unlike the results of Ballantine and Merca [Reference Ballantine and Merca5], our results do not depend on the squares in arithmetic progressions. To state the main results in the next section, we now recall some more partition functions in the remainder of this section.

An overpartition of a positive integer n is a nonincreasing sequence of positive integers that sum to n, where the first occurrence of parts of each size may be overlined (see [Reference Corteel and Lovejoy10]). The overpartition function $\overline {p}(n)$ counts the overpartitions of n. For example, $\overline {p}(4)=14$ and the overpartitions of $4$ are

$$ \begin{align*}& \quad 4, \ \overline{4}, \ 3+1, \ \overline{3}+1, \ 3+\overline{1}, \ \overline{3}+\overline{1}, \ 2+2, \ \overline{2}+2, \ 2+1+1, \notag\\& \overline{2}+1+1, \ 2+\overline{1}+1, \ \overline{2}+\overline{1}+1, \ 1+1+1+1, \ \overline{1}+1+1+1. \end{align*} $$

Since the overlined parts form a partition into unequal parts and the nonoverlined parts form an ordinary partition, the generating function of $\overline {p}(n)$ , as noted by Corteel and Lovejoy [Reference Corteel and Lovejoy10], is given by

(1.2) $$ \begin{align} \sum_{n=0}^\infty \overline{p}(n)q^n= \dfrac{(-q;q)_\infty}{(q;q)_\infty}. \end{align} $$

In 2003, Lovejoy [Reference Lovejoy15] considered the function $\overline {A}_\ell (n)$ , known as the $\ell $ -regular overpartition function [Reference Shen22], that enumerates the overpartitions of n, which have no parts being a multiple of $\ell $ . For example, $\overline {A}_3(4)=10$ and the 3-regular overpartitions of $4$ are given by

$$ \begin{align*} &4,\ \overline{4}, \ 2+2, \ \overline{2}+2, \ 2+1+1, \ \overline{2}+1+1, \ 2+\overline{1}+1, \notag\\& \qquad \overline{2}+\overline{1}+1, \ 1+1+1+1, \ \overline{1}+1+1+1. \end{align*} $$

Andrews [Reference Andrews4] extended the idea of $\ell $ -regular overpartitions by considering the enumeration $\overline {C}_{k,i}(n)$ of so-called singular overpartitions of n that correspond to $\ell $ -regular overpartitions of n in which only parts $\equiv \pm i~(\text {mod}~k)$ may be overlined. Clearly, $\overline {A}_3(n)=\overline {C}_{3,1}(n)$ for all $n\geq 1$ .

Since the multiples of $\ell $ cannot appear in an $\ell $ -regular overpartition, it follows from (1.2) that the generating function of $\overline {A}_\ell (n)$ is given by

(1.3) $$ \begin{align} \sum_{n=0}^\infty \overline{A}_\ell(n)q^n= \dfrac{(-q;q)_\infty/(q;q)_\infty}{(-q^\ell;q^\ell)_\infty/(q^\ell;q^\ell)_\infty}=\dfrac{(-q;q)_\infty(q^\ell;q^\ell)_\infty}{(q;q)_\infty(-q^\ell;q^\ell)_\infty}. \end{align} $$

2 Main results

Euler’s famous recurrence relation for $p(n)$ is given by

(2.1) $$ \begin{align} \sum_{k=-\infty}^{\infty}(-1)^kp(n-\omega(k))=\delta_{0,n}, \end{align} $$

where $\omega (k)=k(3k+1)/2$ , for integers k, are the generalised pentagonal numbers and $\delta _{i,j}$ is the Kronecker delta. For integers $n\geq 1$ , it easily follows from (2.1) that

(2.2) $$ \begin{align} &\sum_{k=0}^{\infty}p(n-\omega(-2k)) +\sum_{k=1}^{\infty}p(n-\omega(2k)) \notag \\ &\quad =\sum_{k=1}^{\infty}p(n-\omega(-2k+1))+\sum_{k=1}^{\infty}p(n-\omega(2k-1)). \end{align} $$

In this paper, we show divisibility of the above sums of partition numbers by multiples of 2 and 3. The following main result arises from (2.2) and Jacobi’s triple product identity [Reference Andrews3, page 21, Theorem 2.8].

Theorem 2.1. Let $\overline {A}_3(n)$ denote the number of 3-regular overpartitions of n, which is also equal to Andrews’ singular overpartition function $\overline {C}_{3,1}(n)$ . Then, for all integers $n\geq 1$ ,

(2.3) $$ \begin{align} &\sum_{k=0}^{\infty}p(n-\omega(-2k)) +\sum_{k=1}^{\infty}p(n-\omega(2k))\notag\\ &\quad=\sum_{k=1}^{\infty}p(n-\omega(-2k+1))+\sum_{k=1}^{\infty}p(n-\omega(2k-1))=\dfrac{\overline{A}_3(n)}{2}. \end{align} $$

There are several recent papers that studied the arithmetical properties of $\overline {A}_\ell (n)$ and $\overline {C}_{k,i}(n)$ . For results on $\overline {A}_3(n)$ and $\overline {C}_{3,1}(n)$ , see [Reference Ahmed and Baruah2, Reference Andrews4, Reference Barman and Ray6Reference Chern9, Reference Hao and Shen11, Reference Li and Yao14, Reference Mahadeva Naika and Gireesh16, Reference Shen22, Reference Shen23, Reference Yao26]. Employing Theorem 2.1 and congruences for $\overline {A}_3(n)$ , that is, for $\overline {C}_{3,1}(n)$ , one can easily deduce divisibility properties of the sums of the partition numbers in (2.2). For example, Barman and Ray [Reference Barman and Ray7, Theorems 1.1–1.3] proved that for a fixed positive integer k, $\overline {C}_{3,1}(n)$ is divisible by $2^k$ and $2\cdot 3^k$ for almost all n. Therefore, it follows that the above sums of partition numbers are divisible by $3^k$ for almost all n. In the following corollary, we present selected congruences for the sums in nondecreasing order of the moduli that arise from the congruences for $\overline {A}_3(n)$ or $\overline {C}_{3,1}(n)$ , which either appeared in [Reference Ahmed and Baruah2, Reference Andrews4, Reference Barman and Ray6, Reference Chen, Hirschhorn and Sellers8, Reference Chern9, Reference Hao and Shen11, Reference Li and Yao14, Reference Mahadeva Naika and Gireesh16, Reference Shen22, Reference Shen23, Reference Yao26] or are easily deduced from these results.

Corollary 2.2. For brevity, set

$$ \begin{align*} S(n):&=\sum_{k=0}^{\infty}p(n-\omega(-2k))+\sum_{k=1}^{\infty}p(n-\omega(2k))\notag\\&=\sum_{k=1}^{\infty}p(n-\omega(-2k+1))+\sum_{k=1}^{\infty}p(n-\omega(2k-1)). \end{align*} $$

For any nonnegative integers k and n,

$$ \begin{align*} S(3n+2)&\equiv 0~(\mathrm{mod}~2),\\S(4n+2)&\equiv 0~(\mathrm{mod}~2),\\S(2^k(4n+3))&\equiv 0~(\mathrm{mod}~3),\\S(9n+3)&\equiv 0~(\mathrm{mod}~3),\\S(2^{k+1}(6n+5))&\equiv 0~(\mathrm{mod}~4),\\S(4^k(16n+6))&\equiv 0~(\mathrm{mod}~4),\\ S(4^k(16n+10))&\equiv 0~(\mathrm{mod}~4),\\ S(4^k(16n+14))&\equiv 0~(\mathrm{mod}~4),\\ S(8n+7)&\equiv 0~(\mathrm{mod}~6),\\ S(36n+21)&\equiv 0~(\mathrm{mod}~6),\\ S(6n+5)&\equiv 0~(\mathrm{mod}~8),\\ S(4^k(72n+42))&\equiv 0~(\mathrm{mod}~8),\\ S(4^k(144n+78))&\equiv 0~(\mathrm{mod}~8),\\ S(48n+12)&\equiv 0~(\mathrm{mod}~9),\\ S(8n+6)&\equiv 0~(\mathrm{mod}~12),\\ S(9n+6)&\equiv 0~(\mathrm{mod}~12),\\ S(36n+30)&\equiv 0~(\mathrm{mod}~12),\\ S(24n+17)&\equiv 0~(\mathrm{mod}~16),\\ S(4^k(72n+60))&\equiv 0~(\mathrm{mod}~16),\\ S(2^k(12n+7))&\equiv 0~(\mathrm{mod}~18),\\ S(144n+102)&\equiv 0~(\mathrm{mod}~24),\\ S(9^k(48n+28))&\equiv 0~(\mathrm{mod}~27),\\ S(9^k(48n+44))&\equiv 0~(\mathrm{mod}~27),\\ S(72n+51)&\equiv 0~(\mathrm{mod}~32),\\ S(72n+69)&\equiv 0~(\mathrm{mod}~32),\\ S(2^{k+1}(12n+11))&\equiv 0~(\mathrm{mod}~36),\\ S(24n+14)&\equiv 0~(\mathrm{mod}~36),\\ S(18n+15)&\equiv 0~(\mathrm{mod}~48),\\ S(12n+11)&\equiv 0~(\mathrm{mod}~72),\\ S(24n+23)&\equiv 0~(\mathrm{mod}~144). \end{align*} $$

Note that the last congruence is equivalent to the example stated in the abstract.

The powers of 2 and 3 in the modulus in each of the above congruences are sharp. However, there might be sub-progressions of the given arithmetic progression along which the powers of 2 and 3 in the modulus may be higher. Furthermore, combining two congruences may also give congruences for higher modulus.

There are congruences for $\overline {A}_3(n)$ or $\overline {C}_{3,1}(n)$ that depend on specific properties of the integer n. For example, Li and Yao [Reference Li and Yao14] show that if $p\equiv 3~(\text {mod}~4)$ and $p\not \mid ~ n$ , then for any $k\geq 0$ ,

(2.4) $$ \begin{align} \overline{A}_3(108p^{2k+1}(4n+p))&\equiv 0~(\text{mod}~27). \end{align} $$

Noting also that $\overline {A}_3(n)\equiv 0~(\text {mod}~2)$ for all integers $n\geq 1$ (see [Reference Chen, Hirschhorn and Sellers8, Theorem 2.9]), it readily follows from (2.4) that

$$ \begin{align*} S(108p^{2k+1}(4n+p))&\equiv 0~(\text{mod}~27). \end{align*} $$

There are several other results like (2.4), which can be derived from results in [Reference Chen, Hirschhorn and Sellers8, Reference Chern9, Reference Li and Yao14, Reference Mahadeva Naika and Gireesh16, Reference Shen23, Reference Sumanth Bharadwaj, Hemanthkumar and Mahadeva Naika25, Reference Yao26].

We prove Theorem 2.1 and Corollary 2.2 in the next two sections.

3 Proof of Theorem 2.1

We use Jacobi’s triple product identity and (2.1) to prove Theorem 2.1.

Jacobi’s triple product identity [Reference Andrews3, page 21, Theorem 2.8] can be stated as follows. For $z\neq 0$ and $|q|<1$ ,

$$ \begin{align*} \sum_{k=-\infty}^\infty z^kq^{k^2}=(-zq;q^2)_\infty(-q/z;q^2)_\infty(q^2;q^2)_\infty.\end{align*} $$

Replacing q by $q^{3/2}$ and z by $\sqrt {q}$ and then manipulating the q-products,

$$ \begin{align*} \sum_{k=-\infty}^\infty q^{k(3k+1)/2}&=(-q^2;q^3)_\infty(-q;q^3)_\infty(q^3;q^3)_\infty\notag\\ &=\dfrac{(-q;q)_\infty(q^3;q^3)_\infty}{(-q^3;q^3)_\infty}\notag\\ &=\dfrac{(-q;q)_\infty(q^3;q^3)_\infty}{(q;q)_\infty(-q^3;q^3)_\infty}\cdot (q;q)_\infty. \end{align*} $$

It follows that

$$ \begin{align*} \dfrac{1}{(q;q)_\infty}\sum_{k=-\infty}^\infty q^{k(3k+1)/2}&=\dfrac{(-q;q)_\infty(q^3;q^3)_\infty}{(q;q)_\infty(-q^3;q^3)_\infty}, \end{align*} $$

which, with the aid of (1.1) and (1.3), may be rewritten as

$$ \begin{align*} \bigg(\sum_{n=0}^\infty p(n)q^n\bigg)\bigg(\sum_{k=-\infty}^\infty q^{k(3k+1)/2}\bigg)&=\sum_{n=0}^\infty \overline{A}_3(n)q^n. \end{align*} $$

Equating the coefficients of $q^n$ on both sides of this equation yields

$$ \begin{align*} \sum_{k=-\infty}^{\infty}p(n-\omega(k))=\overline{A}_3(n), \end{align*} $$

which may be rewritten as

(3.1) $$ \begin{align} \sum_{k=0}^{\infty}p(n-\omega(-2k))+\sum_{k=1}^{\infty}p(n-\omega(2k)) & +\sum_{k=1}^{\infty}p(n-\omega(-2k+1)) \notag\\ &+\sum_{k=1}^{\infty}p(n-\omega(2k-1)) =\overline{A}_3(n). \end{align} $$

From (2.2) and (3.1) it readily follows that

$$ \begin{align*}&2\bigg(\sum_{k=0}^{\infty}p(n-\omega(-2k))+\sum_{k=1}^{\infty}p(n-\omega(2k))\bigg)=\overline{A}_3(n)\notag\end{align*} $$

and

$$ \begin{align*} &2\bigg(\sum_{k=1}^{\infty}p(n-\omega(-2k+1))+\sum_{k=1}^{\infty}p(n-\omega(2k-1))\bigg)=\overline{A}_3(n); \end{align*} $$

which is equivalent to (2.3). This completes the proof of Theorem 2.1.

4 Proof of Corollary 2.2

Most of the congruences follow easily from the corresponding congruences and generating function representations of $\overline {A}_3(n)$ or $\overline {C}_{3,1}(n)$ in [Reference Ahmed and Baruah2, Reference Andrews4, Reference Barman and Ray6, Reference Chen, Hirschhorn and Sellers8, Reference Chern9, Reference Hao and Shen11, Reference Li and Yao14, Reference Mahadeva Naika and Gireesh16, Reference Shen22, Reference Shen23, Reference Yao26] and Theorem 2.1. Therefore, we only prove the last three congruences in Corollary 2.2, that is,

(4.1) $$ \begin{align} S(18n+15)&\equiv 0~(\text{mod}~48), \end{align} $$
(4.2) $$ \begin{align} S(12n+11)&\equiv 0~(\text{mod}~72), \end{align} $$

and

(4.3) $$ \begin{align} S(24n+23)&\equiv 0~(\text{mod}~144). \end{align} $$

Andrews [Reference Andrews4, Theorem 2] and Yao [Reference Yao26, Theorem 1.1, (1.8)] proved that

$$ \begin{align*} \overline{A}_3(9n+6)\equiv 0~(\text{mod}~3) \quad\mbox{and}\quad \overline{A}_3(18n+15)\equiv 0~(\text{mod}~32), \end{align*} $$

from which it follows that

$$ \begin{align*} \overline{A}_3(18n+15)&\equiv 0~(\text{mod}~96). \end{align*} $$

Now (4.1) is apparent from Theorem 2.1 and the above congruence.

Next, Barman and Ray [Reference Barman and Ray6, Section 3] showed that

(4.4) $$ \begin{align} \sum_{n=0}^\infty \overline{A}_3(12n+11)q^n =144 \dfrac{(q^2;q^2)_\infty^{13}(q^3;q^3)_\infty^{12}}{(q;q)_\infty^{22}(q^6;q^6)_\infty^{3}}+576q\dfrac{(q^2;q^2)_\infty^{10}(q^3;q^3)_\infty^{3}(q^6;q^6)_\infty^{6}}{(q;q)_\infty^{19}}. \end{align} $$

Therefore,

$$ \begin{align*} \overline{A}_3(12n+11)&\equiv 0~(\text{mod}~144), \end{align*} $$

which, by Theorem 2.1, readily implies (4.2).

It also follows from (4.4) that

(4.5) $$ \begin{align} \sum_{n=0}^\infty \overline{A}_3(12n+11)q^n&\equiv144 \dfrac{(q^2;q^2)_\infty^{13}(q^3;q^3)_\infty^{12}}{(q;q)_\infty^{22}(q^6;q^6)_\infty^{3}}~(\text{mod}~288). \end{align} $$

But, by the binomial theorem, $(q^j;q^j)_\infty ^2\equiv (q^{2j};q^{2j})_\infty ~(\text {mod}~2)$ for any integer $j\geq 1$ . Therefore, it follows from (4.5) that

$$ \begin{align*} \sum_{n=0}^\infty \overline{A}_3(12n+11)q^n&\equiv144 f_4f_6^{3}~(\text{mod}~288). \end{align*} $$

Equating the coefficients of $q^{2n+1}$ on both sides of this congruence yields

$$ \begin{align*} \overline{A}_3(24n+23)&\equiv0~(\text{mod}~288), \end{align*} $$

which, by Theorem 2.1, readily gives (4.3).

References

Ahlgren, S., ‘Distribution of the partition function modulo composite integers $M$ ’, Math. Ann. 318 (2000), 795803.10.1007/s002080000142CrossRefGoogle Scholar
Ahmed, Z. and Baruah, N. D., ‘New congruences for Andrews’ singular overpartitions’, Int. J. Number Theory 11 (2015), 22472264.10.1142/S1793042115501018CrossRefGoogle Scholar
Andrews, G. E., The Theory of Partitions (Addison-Wesley, Reading, MA, 1976).Google Scholar
Andrews, G. E., ‘Singular overpartitions’, Int. J. Number Theory 11 (2015), 15231533.10.1142/S1793042115400059CrossRefGoogle Scholar
Ballantine, C. and Merca, M., ‘Parity of sums of partition numbers and squares in arithmetic progressions’, Ramanujan J. 44 (2017), 617630.10.1007/s11139-016-9845-6CrossRefGoogle Scholar
Barman, R. and Ray, C., ‘Congruences for $\ell$ -regular overpartitions and Andrews’ singular overpartitions’, Ramanujan J. 45 (2018), 497515.10.1007/s11139-016-9860-7CrossRefGoogle Scholar
Barman, R. and Ray, C., ‘Divisibility of Andrews’ singular overpartitions by powers of 2 and 3’, Res. Number Theory 5 (2019), Article no. 22.10.1007/s40993-019-0161-2CrossRefGoogle Scholar
Chen, S.-C., Hirschhorn, M. D. and Sellers, J. A., ‘Arithmetic properties of Andrews’ singular overpartitions’, Int. J. Number Theory 11 (2015), 14631476.10.1142/S1793042115400011CrossRefGoogle Scholar
Chern, S., ‘New congruences for $\ell$ -regular overpartitions’, Integers 17 (2017), Article no. A22.Google Scholar
Corteel, S. and Lovejoy, J., ‘Overpartitions’, Trans. Amer. Math. Soc. 356 (2004), 16231635.10.1090/S0002-9947-03-03328-2CrossRefGoogle Scholar
Hao, R. X. J. and Shen, E. Y. Y., ‘On the number of $l$ -regular overpartitions’, Int. J. Number Theory 17 (2021), 21532173.10.1142/S1793042121500810CrossRefGoogle Scholar
Hong, L. and Zhang, S., ‘Proof of the Ballantine–Merca conjecture and theta function identities modulo 2’, Proc. Amer. Math. Soc., to appear.Google Scholar
Hu, W., Yao, O. X. M. and Zhao, T., ‘New parity results of sums of partitions and squares in arithmetic progressions’, Contrib. Discrete Math. 14 (2019), 117129.Google Scholar
Li, X. and Yao, O. X. M., ‘New infinite families of congruences for Andrews’ $\left(k,i\right)$ -singular overpartitions’, Quaest. Math. 41 (2018), 10051019.10.2989/16073606.2017.1419297CrossRefGoogle Scholar
Lovejoy, J., ‘Gordon’s theorem for overpartitions’, J. Combin. Theory Ser. A 103 (2003), 393401.10.1016/S0097-3165(03)00116-XCrossRefGoogle Scholar
Mahadeva Naika, M. S. and Gireesh, D. S., ‘Congruences for Andrews’ singular overpartitions’, J. Number Theory 165 (2016), 109130.10.1016/j.jnt.2016.01.015CrossRefGoogle Scholar
Ono, K., ‘On the parity of the partition function in arithmetic progressions’, J. reine angew. Math. 472 (1996), 115.Google Scholar
Ono, K., ‘Distribution of the partition function modulo $m$ ’, Ann. Math. 151 (2000), 293307.10.2307/121118CrossRefGoogle Scholar
Radu, C.-S., ‘A proof of Subbarao’s conjecture’, J. reine angew. Math. 672 (2012), 161175.Google Scholar
Ramanujan, S., ‘Some properties of $p(n)$ , the number of partitions of $n$ ’, Proc. Cambridge Philos. Soc. 19 (1919), 207210.Google Scholar
Ramanujan, S., Collected Papers of Srinivasa Ramanujan (Cambridge University Press, Cambridge, 1927); reprinted by Chelsea, New York, 1962, and by the American Mathematical Society, Providence, RI, 2000.Google Scholar
Shen, E. Y. Y., ‘Arithmetic properties of $l$ -regular overpartitions’, Int. J. Number Theory 12 (2016), 841852.10.1142/S1793042116500548CrossRefGoogle Scholar
Shen, E. Y. Y., ‘Congruences modulo 9 for singular overpartitions’, Int. J. Number Theory 13 (2017), 717724.10.1142/S1793042117500361CrossRefGoogle Scholar
Subbarao, M. V., ‘Remarks on the partition function’, Amer. Math. Monthly 73 (1966), 851854.10.2307/2314179CrossRefGoogle Scholar
Sumanth Bharadwaj, H. S., Hemanthkumar, B. and Mahadeva Naika, M. S., ‘On 3- and 9-regular overpartitions modulo powers of 3’, Colloq. Math. 154 (2018), 121130.10.4064/cm7317-10-2017CrossRefGoogle Scholar
Yao, O. X. M., ‘Congruences modulo 16, 32, and 64 for Andrews’s singular overpartitions’, Ramanujan J. 43 (2017), 215228.10.1007/s11139-015-9760-2CrossRefGoogle Scholar