We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\pi $ be a cuspidal, cohomological automorphic representation of an inner form G of $\operatorname {{PGL}}_2$ over a number field F of arbitrary signature. Further, let $\mathfrak {p}$ be a prime of F such that G is split at $\mathfrak {p}$ and the local component $\pi _{\mathfrak {p}}$ of $\pi $ at $\mathfrak {p}$ is the Steinberg representation. Assuming that the representation is noncritical at $\mathfrak {p}$, we construct automorphic $\mathcal {L}$-invariants for the representation $\pi $. If the number field F is totally real, we show that these automorphic $\mathcal {L}$-invariants agree with the Fontaine–Mazur $\mathcal {L}$-invariant of the associated p-adic Galois representation. This generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight $2$ to arbitrary cohomological weights.
We study some analytic properties of the Asai lifts associated with cuspidal Hilbert modular forms, and prove sharp bounds for the second moment of their central L-values.
We study the étale cohomology of Hilbert modular varieties, building on the methods introduced by Caraiani and Scholze for unitary Shimura varieties. We obtain the analogous vanishing theorem: in the ‘generic’ case, the cohomology with torsion coefficients is concentrated in the middle degree. We also probe the structure of the cohomology beyond the generic case, obtaining bounds on the range of degrees where cohomology with torsion coefficients can be non-zero. The proof is based on the geometric Jacquet–Langlands functoriality established by Tian and Xiao and avoids trace formula computations for the cohomology of Igusa varieties. As an application, we show that, when $p$ splits completely in the totally real field and under certain technical assumptions, the $p$-adic local Langlands correspondence for $\mathrm {GL}_2(\mathbb {Q}_p)$ occurs in the completed homology of Hilbert modular varieties.
We prove that the Jacquet–Langlands correspondence for cohomological automorphic forms on quaternionic Shimura varieties is realized by a Hodge class. Conditional on Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups, we also show that the image of this Hodge class in $\ell $-adic cohomology is Galois invariant for all $\ell $.
Let f be a primitive Hilbert modular form over F of weight k with coefficient field
$E_f$
, generated by the Fourier coefficients
$C(\mathfrak {p}, f)$
for
$\mathfrak {p} \in \mathrm {Spec}(\mathcal {O}_F)$
. Under certain assumptions on the image of the residual Galois representations attached to f, we calculate the Dirichlet density of
$\{\mathfrak {p} \in \mathrm {Spec}(\mathcal {O}_F)| E_f = \mathbb {Q}(C(\mathfrak {p}, f))\}$
. For
$k=2$
, we show that those assumptions are satisfied when
$[E_f:\mathbb {Q}] = [F:\mathbb {Q}]$
is an odd prime. We also study analogous results for
$F_f$
, the fixed field of
$E_f$
by the set of all inner twists of f. Then, we provide some examples of f to support our results. Finally, we compute the density of
$\{\mathfrak {p} \in \mathrm {Spec}(\mathcal {O}_F)| C(\mathfrak {p}, f) \in K\}$
for fields K with
$F_f \subseteq K \subseteq E_f$
.
Let p be a rational prime. Let F be a totally real number field such that F is unramified over p and the residue degree of any prime ideal of F dividing p is $\leq 2$. In this paper, we show that the eigenvariety for $\mathrm {Res}_{F/\mathbb {Q}}(\mathit {GL}_{2})$, constructed by Andreatta, Iovita, and Pilloni, is proper at integral weights for $p\geq 3$. We also prove a weaker result for $p=2$.
We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial
$\Theta $
-operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial
$\Theta $
-operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
A well-known conjecture, often attributed to Serre, asserts that any motive over any number field has infinitely many ordinary reductions (in the sense that the Newton polygon coincides with the Hodge polygon). In the case of Hilbert modular cuspforms $f$ of parallel weight $(2,\ldots ,2)$, we show how to produce more ordinary primes by using the Sato–Tate equidistribution and combining it with the Galois theory of the Hecke field. Under the assumption of stronger forms of Sato–Tate equidistribution, we get stronger (but conditional) results. In the case of higher weights, we formulate the ordinariness conjecture for submotives of the intersection cohomology of proper algebraic varieties with motivic coefficients, and verify it for the motives whose $\ell$-adic Galois realisations are abelian on a finite-index subgroup. We get some results for Hilbert cuspforms of weight $(3,\ldots ,3)$, weaker than those for $(2,\ldots ,2)$.
Let $L/F$ be a quadratic extension of totally real number fields. For any prime $p$ unramified in $L$, we construct a $p$-adic $L$-function interpolating the central values of the twisted triple product $L$-functions attached to a $p$-nearly ordinary family of unitary cuspidal automorphic representations of $\text{Res}_{L\times F/F}(\text{GL}_{2})$. Furthermore, when $L/\mathbb{Q}$ is a real quadratic number field and $p$ is a split prime, we prove a $p$-adic Gross–Zagier formula relating the values of the $p$-adic $L$-function outside the range of interpolation to the syntomic Abel–Jacobi image of generalized Hirzebruch–Zagier cycles.
Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct $p$-adic $L$-functions for non-critical slope rational modular forms, the theory has been extended to construct $p$-adic $L$-functions for non-critical slope automorphic forms over totally real and imaginary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous construction over a general number field. In particular, we start by proving a control theorem stating that the specialisation map from overconvergent to classical modular symbols is an isomorphism on the small slope subspace. We then show that if one takes the modular symbol attached to a small slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding overconvergent symbol, which moreover interpolates critical values of the $L$-function of the eigenform. We prove that this distribution is independent of the choices made in its construction. We define the $p$-adic $L$-function of the eigenform to be this distribution.
We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.
In this paper we perform an extensive study of the spaces of automorphic forms for $\text{GL}_{2}$ of weight $2$ and level $\mathfrak{n}$, for $\mathfrak{n}$ an ideal in the ring of integers of the quartic CM field $\mathbb{Q}({\it\zeta}_{12})$ of twelfth roots of unity. This study is conducted through the computation of the Hecke module $H^{\ast }({\rm\Gamma}_{0}(\mathfrak{n}),\mathbb{C})$, and the corresponding Hecke action. Combining this Hecke data with the Faltings–Serre method for proving equivalence of Galois representations, we are able to provide the first known examples of modular elliptic curves over this field.
In this paper, we study real-dihedral harmonic Maass forms and their Fourier coefficients. The main result expresses the values of Hilbert modular forms at twisted CM 0-cycles in terms of these Fourier coefficients. This is a twisted version of the main theorem in Bruinier and Yang [CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229–288] and provides evidence that the individual Fourier coefficients are logarithms of algebraic numbers in the appropriate real-quadratic field. From this result and numerical calculations, we formulate an algebraicity conjecture, which is an analogue of Stark’s conjecture in the setting of harmonic Maass forms. Also, we give a conjectural description of the primes appearing in CM-values of Hilbert modular functions.
In this paper we establish a Chowla–Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function ${\rm\Gamma}$ and an analogous function ${\rm\Gamma}_{2}$ at rational numbers. We combine this identity with work of Colmez to relate the CM values of the Hilbert modular function to Faltings heights of CM abelian varieties. We also give explicit formulas for products of exponentials of Faltings heights, allowing us to study some of their arithmetic properties using the Lang–Rohrlich conjecture.
Suppose E is an elliptic curve over $\Bbb Q$, and p>3 is a split multiplicative prime for E. Let q ≠ p be an auxiliary prime, and fix an integer m coprime to pq. We prove the generalised Mazur–Tate–Teitelbaum conjecture for E at the prime p, over number fields $K\subset \Bbb Q\big(\mu_{{q^{\infty}}},\;\!^{q^{\infty}\!\!\!\!}\sqrt{m}\big)$ such that p remains inert in $K\cap\Bbb Q(\mu_{{q^{\infty}}})^+$. The proof makes use of an improved p-adic L-function, which can be associated to the Rankin convolution of two Hilbert modular forms of unequal parallel weight.
We prove the following theorem. Suppose that $F\,=\,\left( {{f}_{1}},\,{{f}_{2}} \right)$ is a 2-dimensional, vector-valued modular form on $\text{S}{{\text{L}}_{2}}\left( \mathbb{Z} \right)$ whose component functions ${{f}_{1}}$, ${{f}_{2}}$ have rational Fourier coefficients with bounded denominators. Then ${{f}_{1}}$ and ${{f}_{2}}$ are classical modular forms on a congruence subgroup of the modular group.