We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study density and partition properties of polynomial equations in prime variables. We consider equations of the form $a_1h(x_1) + \cdots + a_sh(x_s)=b$, where the ai and b are fixed coefficients and h is an arbitrary integer polynomial of degree d. We establish that the natural necessary conditions for this equation to have a monochromatic non-constant solution with respect to any finite colouring of the prime numbers are also sufficient when the equation has at least $(1+o(1))d^2$ variables. We similarly characterize when such equations admit solutions over any set of primes with positive relative upper density. In both cases, we obtain lower bounds for the number of monochromatic or dense solutions in primes that are of the correct order of magnitude. Our main new ingredient is a uniform lower bound on the cardinality of a prime polynomial Bohr set.
We prove convergence in norm and pointwise almost everywhere on $L^p$, $p\in (1,\infty )$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
We consider families of exponential sums indexed by a subgroup of invertible classes modulo some prime power q. For fixed d, we restrict to moduli q so that there is a unique subgroup of invertible classes modulo q of order d. We study distribution properties of these families of sums as q grows and we establish equidistribution results in some regions of the complex plane which are described as the image of a multi-dimensional torus via an explicit Laurent polynomial. In some cases, the region of equidistribution can be interpreted as the one delimited by a hypocycloid, or as a Minkowski sum of such regions.
has appreciably fewer solutions in the subcritical range
$s < \tfrac 12k(k+1)$
than its homogeneous counterpart, provided that
$a_{\ell } \neq 0$
for some
$\ell \leqslant k-1$
. Our methods use Vinogradov’s mean value theorem in combination with a shifting argument.
We consider autocorrelation functions for supersymmetric quantum mechanical systems (consisting of a fermion and a boson) confined in trigonometric Pöschl–Teller partner potentials. We study the limit of rescaled autocorrelation functions (at random time) as the localization of the initial state goes to infinity. The limiting distribution can be described using pairs of Jacobi theta functions on a suitably defined homogeneous space, as a corollary of the work of Cellarosi and Marklof. A construction by Contreras-Astorga and Fernández provides large classes of Pöschl-Teller partner potentials to which our analysis applies.
We establish Diophantine inequalities for the fractional parts of generalized polynomials, in particular for sequences $\unicode[STIX]{x1D708}(n)=\lfloor n^{c}\rfloor +n^{k}$ with $c>1$ a non-integral real number and $k\in \mathbb{N}$, as well as for $\unicode[STIX]{x1D708}(p)$ where $p$ runs through all prime numbers. This is related to classical work of Heilbronn and to recent results of Bergelson et al.
with $1\leqslant x_{i},y_{i}\leqslant X\;(1\leqslant i\leqslant s)$. By exploiting sharp estimates for an auxiliary mean value, we obtain bounds for $I_{s,k,r}(X)$ for $1\leqslant r\leqslant k-1$. In particular, when $s,k\in \mathbb{N}$ satisfy $k\geqslant 3$ and $1\leqslant s\leqslant (k^{2}-1)/2$, we establish the essentially diagonal behaviour $I_{s,k,1}(X)\ll X^{s+\unicode[STIX]{x1D700}}$.
We apply multigrade efficient congruencing to estimate Vinogradov’s integral of degree $k$ for moments of order $2s$, establishing strongly diagonal behaviour for $1\leqslant s\leqslant \frac{1}{2}k(k+1)-\frac{1}{3}k+o(k)$. In particular, as $k\rightarrow \infty$, we confirm the main conjecture in Vinogradov’s mean value theorem for a proportion asymptotically approaching $100\%$ of the critical interval $1\leqslant s\leqslant \frac{1}{2}k(k+1)$.
In this paper, we investigate in various ways the representation of a large natural number as a sum of a fixed power of Piatetski-Shapiro numbers, thereby establishing a variant of the Hilbert–Waring problem with numbers from a sparse sequence.
An asymptotic formula is obtained for the number of rational points of bounded height on the class of varieties described in the title line. The formula is proved via the Hardy-Littlewood method, and along the way we establish two new results on Weyl sums that are of some independent interest.
We obtain an improved bound for the 2k-th moment of a degree k Weyl sum, restricted to a set of minor arcs, when k is small. We then present some applications of this bound to some Diophantine problems, including a case of the Waring–Goldbach problem, and a particular family of Diophantine equations defined as the sum of a norm form and a diagonal form.
We develop Weyl differencing and Hua-type lemmata for a class of multidimensional exponential sums. We then apply our estimates to bound the number of variables required to establish an asymptotic formula for the number of solutions of a system of diophantine equations arising from the study of linear spaces on hypersurfaces. For small values of the degree and dimension, our results are superior to those stemming from the author’s earlier work on Vinogradov’s mean value theorem.
We investigate exceptional sets in the Waring–Goldbach problem. For example, in the cubic case, we show that all but $O\left( {{N}^{79/84+\in }} \right)$ integers subject to the necessary local conditions can be represented as the sum of five cubes of primes. Furthermore, we develop a new device that leads easily to similar estimates for exceptional sets for sums of fourth and higher powers of primes.
We establish that almost all natural numbers not congruent to 5 modulo 9 are the sum of three cubes and a sixth power of natural numbers, and show, moreover, that the number of such representations is almost always of the expected order of magnitude. As a corollary, the number of representations of a large integer as the sum of six cubes and two sixth powers has the expected order of magnitude. Our results depend on a certain seventh moment of cubic Weyl sums restricted to minor arcs, the latest developments in the theory of exponential sums over smooth numbers, and recent technology for controlling the major arcs in the Hardy-Littlewood method, together with the use of a novel quasi-smooth set of integers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.