Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T21:05:53.612Z Has data issue: false hasContentIssue false

Rational points on linear slices of diagonal hypersurfaces

Published online by Cambridge University Press:  11 January 2016

Jörg Brüdern
Affiliation:
Mathematisches Institut, D-37073 Göttingen, Germany, bruedern@uni-math.gwdg.de
Olivier Robert
Affiliation:
Université de Lyon and Université de Saint-Etienne, Institut Camille Jordan CNRS UMR 5208, F-42000 Saint-Etienne, France, olivier.robert@univ-st-etienne.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An asymptotic formula is obtained for the number of rational points of bounded height on the class of varieties described in the title line. The formula is proved via the Hardy-Littlewood method, and along the way we establish two new results on Weyl sums that are of some independent interest.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2015

References

[1] Birch, B. J., Forms in many variables, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 265 (1961/1962), 245263. MR 0150129.Google Scholar
[2] Boklan, K. D., A reduction technique in Waring's problem, I, Acta Arith. 65 (1993), 147161. MR 1240121.Google Scholar
[3] R. de la Bretèche, , Répartition des points rationnels sur la cubique de Segre, Proc. Lond. Math. Soc. (3) 95(2007), 69155. MR 2329549. DOI 10.1112/plms/pdm001.Google Scholar
[4] Browning, T. D. and Heath-Brown, D. R., Rational points on quartic hypersurfaces, J. Reine Angew. Math. 629(2009), 3788. MR 2527413. DOI 10.1515/CRELLE.2009.026.Google Scholar
[5] Brüdern, J., A problem in additive number theory, Math. Proc. Cambridge Philos. Soc. 103(1988), 2733. MR 0913447. DOI 10.1017/S0305004100064586.Google Scholar
[6] Brüdern, J., and Cook, R. J., On simultaneous diagonal equations and inequalities, Acta Arith. 62(1992), 125149. MR 1183985.Google Scholar
[7] Cassels, J. W. S. and Guy, M. J. T., On the Hasse principle for cubic surfaces, Math- ematika 13(1966), 111120. MR 0211966.Google Scholar
[8] Chalk, J. H. H., On Hua's estimates for exponential sums, Mathematika 34(1987), 115123. MR 0933491. DOI 10.1112/S002557930001336X.Google Scholar
[9] Davenport, H. and Lewis, D. J., Cubic equations of additive type, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 261(1966), 97136. MR 0205962.Google Scholar
[10] Davenport, H. and Lewis, D. J., Simultaneous equations of additive type, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 264(1969), 557595. MR 0245542.Google Scholar
[11] Greaves, G., Some Diophantine equations with almost all solutions trivial, Mathematika 44 (1997), 1436. MR 1464372. DOI 10.1112/S002557930001192X.CrossRefGoogle Scholar
[12] Halberstam, H. and Richert, H.-E., Sieve Methods, London Math. Soc. Monogr. Ser. 4, Academic Press, London, 1974. MR 0424730.Google Scholar
[13] Hall, R. R. and Tenenbaum, G., Divisors, Cambridge Tracts in Math. 90, Cambridge University Press, Cambridge, 1988. MR 0964687. DOI 10.1017/CBO9780511566004. Google Scholar
[14] Harvey, M. P., Minor arc moments of Weyl sums, Glasg. Math. J. 55 (2013), 97113. MR 3001332. DOI 10.1017/S0017089512000365.Google Scholar
[15] Hooley, C., On the representation of a number as the sum of two h-th powers, Math. Z. 84 (1964), 126136. MR 0162767.CrossRefGoogle Scholar
[16] Hooley, C., On a new technique and its applications to the theory of numbers, Proc. Lond. Math. Soc. (3) 38 (1979), 115151. MR 0520975. DOI 10.1112/plms/s3-38.1.115.Google Scholar
[17] Hooley, C., On another sieve method and the numbers that are a sum of two hth powers, Proc. Lond. Math. Soc. (3) 43 (1981), 73109. MR 0623719. DOI 10.1112/plms/s3-43.1.73.CrossRefGoogle Scholar
[18] Hooley, C., On nonary cubic forms, J. Reine Angew. Math. 386 (1988), 3298. MR 0936992. DOI 10.1515/crll.1988.386.32.Google Scholar
[19] Hooley, C., On nonary cubic forms, II, J. Reine Angew. Math. 415 (1991), 95165. MR 1096903. DOI 10.1515/crll.1991.415.95.Google Scholar
[20] Hooley, C., On nonary cubic forms, III, J. Reine Angew. Math. 456 (1994), 5363. MR 1301451. DOI 10.1515/crll.1994.456.53.Google Scholar
[21] Hooley, C., On another sieve method and the numbers that are a sum of two hth powers, II, J. Reine Angew. Math. 475 (1996), 5575. MR 1396726. DOI 10.1515/crll.1996.475.55.Google Scholar
[22] Hua, L. K., Additive Theory of Prime Numbers, Transl. Math. Monogr. 13, Amer. Math. Soc., Providence, 1965. MR 0194404.Google Scholar
[23] Parsell, S. T., Pairs of additive equations of small degree, Acta Arith. 104 (2002), 345402. MR 1911162. DOI 10.4064/aa104-4-2.Google Scholar
[24] Skinner, C. M. and Wooley, T. D., Sums of two kth powers, J. Reine Angew. Math. 462 (1995), 5768. MR 1329902.Google Scholar
[25] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, Oxford University Press, New York, 1986. MR 0882550.Google Scholar
[26] Vaughan, R. C., On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 122170. MR 0826156. DOI 10.1515/crll.1986.365.122.Google Scholar
[27] Vaughan, R. C., On Waring's problem for smaller exponents, II, Mathematika 33 (1986), 622. MR 0859494. DOI 10.1112/S0025579300013838.Google Scholar
[28] Vaughan, R. C., A new iterative method in Waring's problem, Acta Math. 162 (1989), 171. MR 0981199. DOI 10.1007/BF02392834.Google Scholar
[29] Vaughan, R. C., The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge University Press, Cambridge, 1997. MR 1435742. DOI 10.1017/CBO9780511470929.Google Scholar
[30] Vaughan, R. C., “On generating functions in additive number theory, I” in Analytic Number Theory, Cambridge University Press, Cambridge, 2009, 436448. MR 2508662.Google Scholar
[31] Vaughan, R. C. and Wooley, T. D., On a certain nonary cubic form and related equations, Duke Math. J. 80 (1995), 669735. MR 1370112. DOI 10.1215/S0012-7094-95-08023-5.Google Scholar
[32] Wooley, T. D., On simultaneous additive equations, II, J. Reine Angew. Math. 419 (1991), 141198. MR 1116923. DOI 10.1515/crll.1991.419.141.Google Scholar
[33] Wooley, T. D., On simultaneous additive equations, III, Mathematika 37 (1990), 8596. MR 1067890. DOI 10.1112/S0025579300012821.Google Scholar
[34] Wooley, T. D., Sums of two cubes, Int. Math. Res. Not. IMRN 1995, no. 4, 181184. MR 1326063. DOI 10.1155/S1073792895000146.Google Scholar
[35] Wooley, T. D., The asymptotic formula in Waring's problem, Int. Math. Res. Not. IMRN 2012, no. 7, 14851504.Google Scholar
[36] Wooley, T. D., Vinogradov 's mean value theorem via efficient congruencing, Ann. of Math. (2) 175 (2012), 15751627. MR 2912712. DOI 10.4007/annals.2012.175.3.12.Google Scholar
[37] Wooley, T. D., Vinogradov's mean value theorem via efficient congruencing, II, Duke Math. J. 162 (2013), 673730. MR 3039678. DOI 10.1215/00127094-2079905.Google Scholar