We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove several boundedness statements for geometrically integral normal del Pezzo surfaces X over arbitrary fields. We give an explicit sharp bound on the irregularity if X is canonical or regular. In particular, we show that wild canonical del Pezzo surfaces exist only in characteristic $2$. As an application, we deduce that canonical del Pezzo surfaces form a bounded family over $\mathbb {Z}$, generalising work of Tanaka. More generally, we prove the BAB conjecture on the boundedness of $\varepsilon $-klt del Pezzo surfaces over arbitrary fields of characteristic different from $2, 3$ and $5$.
For any smooth proper rigid space $X$ over a complete algebraically closed extension $K$ of $\mathbb {Q}_p$ we give a geometrisation of the $p$-adic Simpson correspondence of rank one in terms of analytic moduli spaces: the $p$-adic character variety is canonically an étale twist of the moduli space of topologically torsion Higgs line bundles over the Hitchin base. This also eliminates the choice of an exponential. The key idea is to relate both sides to moduli spaces of $v$-line bundles. As an application, we study a major open question in $p$-adic non-abelian Hodge theory raised by Faltings, namely which Higgs bundles correspond to continuous representations under the $p$-adic Simpson correspondence. We answer this question in rank one by describing the essential image of the continuous characters $\pi ^{{\mathrm {\acute {e}t}}}_1(X)\to K^\times$ in terms of moduli spaces: for projective $X$ over $K=\mathbb {C}_p$, it is given by Higgs line bundles with vanishing Chern classes like in complex geometry. However, in general, the correct condition is the strictly stronger assumption that the underlying line bundle is a topologically torsion element in the topological group $\operatorname {Pic}(X)$.
Given a perfect field $k$ with algebraic closure $\overline {k}$ and a variety $X$ over $\overline {k}$, the field of moduli of $X$ is the subfield of $\overline {k}$ of elements fixed by field automorphisms $\gamma \in \operatorname {Gal}(\overline {k}/k)$ such that the Galois conjugate $X_{\gamma }$ is isomorphic to $X$. The field of moduli is contained in all subextensions $k\subset k'\subset \overline {k}$ such that $X$ descends to $k'$. In this paper, we extend the formalism and define the field of moduli when $k$ is not perfect. Furthermore, Dèbes and Emsalem identified a condition that ensures that a smooth curve is defined over its field of moduli, and prove that a smooth curve with a marked point is always defined over its field of moduli. Our main theorem is a generalization of these results that applies to higher-dimensional varieties, and to varieties with additional structures. In order to apply this, we study the problem of when a rational point of a variety with quotient singularities lifts to a resolution. As a consequence, we prove that a variety $X$ of dimension $d$ with a smooth marked point $p$ such that $\operatorname {Aut}(X,p)$ is finite, étale and of degree prime to $d!$ is defined over its field of moduli.
We study horizontal semistable and horizontal de Rham representations of the absolute Galois group of a certain smooth affinoid over a $p$-adic field. In particular, we prove that a horizontal de Rham representation becomes horizontal semistable after a finite extension of the base field. As an application, we show that every de Rham local system on a smooth rigid analytic variety becomes horizontal semistable étale locally around every classical point. We also discuss potentially crystalline loci of de Rham local systems and cohomologically potentially good reduction loci of smooth proper morphisms.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.
The sequence of prime numbers p for which a variety over ℚ has no p-adic point plays a fundamental role in arithmetic geometry. This sequence is deterministic, however, we prove that if we choose a typical variety from a family then the sequence has random behaviour. We furthermore prove that this behaviour is modelled by a random walk in Brownian motion. This has several consequences, one of them being the description of the finer properties of the distribution of the primes in this sequence via the Feynman–Kac formula.
For families of smooth complex projective varieties, we show that normal functions arising from algebraically trivial cycle classes are algebraic and defined over the field of definition of the family. In particular, the zero loci of those functions are algebraic and defined over such a field of definition. This proves a conjecture of Charles.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
Using the cohomology theory of Dwork, as developed by Adolphson and Sperber, we exhibit a deterministic algorithm to compute the zeta function of a nondegenerate hypersurface defined over a finite field. This algorithm is particularly well suited to work with polynomials in small characteristic that have few monomials (relative to their dimension). Our method covers toric, affine, and projective hypersurfaces, and also can be used to compute the L-function of an exponential sum.
Let K be the function field of a connected regular scheme S of dimension 1, and let $f : X\to Y$ be a finite cover of projective smooth and geometrically connected curves over K with $g(X)\ge 2$. Suppose that f can be extended to a finite cover ${\mathcal X} \to {\mathcal Y}$ of semi-stable models over S (it is known that this is always possible up to finite separable extension of K). Then there exists a unique minimal such cover. This gives a canonical way to extend $X\to Y$ to a finite cover of semi-stable models over S.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.