Article contents
A $p$-adic monodromy theorem for de Rham local systems
Published online by Cambridge University Press: 15 December 2022
Abstract
We study horizontal semistable and horizontal de Rham representations of the absolute Galois group of a certain smooth affinoid over a $p$-adic field. In particular, we prove that a horizontal de Rham representation becomes horizontal semistable after a finite extension of the base field. As an application, we show that every de Rham local system on a smooth rigid analytic variety becomes horizontal semistable étale locally around every classical point. We also discuss potentially crystalline loci of de Rham local systems and cohomologically potentially good reduction loci of smooth proper morphisms.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2022 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence
Footnotes
Current address: Yau Mathematical Sciences Center, Tsinghua University, W10 Ningzhai, Haidian, Beijing 100084, China
The author was supported by the National Science Foundation under Grant No. DMS-1638352 through membership of the Institute for Advanced Study.
References
- 3
- Cited by