We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a wide class of affine varieties, which we call affine Fano varieties. By analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano varieties, and provide many examples and non-examples of super-rigid affine Fano varieties.
Let $U$ be an affine smooth curve defined over an algebraically closed field of positive characteristic. The Abhyankar conjecture (proved by Raynaud and Harbater in 1994) describes the set of finite quotients of Grothendieck’s étale fundamental group $\unicode[STIX]{x1D70B}_{1}^{\acute{\text{e}}\text{t}}(U)$. In this paper, we consider a purely inseparable analogue of this problem, formulated in terms of Nori’s profinite fundamental group scheme $\unicode[STIX]{x1D70B}^{N}(U)$, and give a partial answer to it.
The $\text{SL}\left( 2,\mathbb{C} \right)$-representation varieties of punctured surfaces form natural families parameterized by monodromies at the punctures. In this paper, we compute the loci where these varieties are singular for the cases of one-holed and two-holed tori and the four-holed sphere. We then compute the de Rham cohomologies of these varieties of the one-holed torus and the four-holed sphere when the varieties are smooth via the Grothendieck theorem. Furthermore, we produce the explicit Gauß-Manin connection on the natural family of the smooth $\text{SL}\left( 2,\mathbb{C} \right)$-representation varieties of the one-holed torus.
An invertible polynomial in n variables is a quasi-homogeneous polynomial consisting of n monomials so that the weights of the variables and the quasi-degree are well defined. In the framework of the construction of mirror symmetric orbifold Landau–Ginzburg models, Berglund, Hübsch and Henningson considered a pair (f, G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair . Here we study the reduced orbifold zeta functions of dual pairs (f, G) and and show that they either coincide or are inverse to each other depending on the number n of variables.
For each del Pezzo surface $S$ with du Val singularities, we determine whether it admits a $(-K_{S})$-polar cylinder or not. If it allows one, then we present an effective $\mathbb{Q}$-divisor $D$ that is $\mathbb{Q}$-linearly equivalent to $-K_{S}$ and such that the open set $S\setminus \text{Supp}(D)$ is a cylinder. As a corollary, we classify all the del Pezzo surfaces with du Val singularities that admit non-trivial $\mathbb{G}_{a}$-actions on their affine cones defined by their anticanonical divisors.
We show the existence of a large family of representations supported by the orbit closure of the determinant. However, the validity of our result is based on the validity of the celebrated ‘Latin square conjecture’ due to Alon and Tarsi or, more precisely, on the validity of an equivalent ‘column Latin square conjecture’ due to Huang and Rota.
An example is given of a UFD which has an infinitely generated Derksen invariant. The ring is “almost rigid” meaning that the Derksen invariant is equal to the Makar-Limanov invariant. Techniques to show that a ring is (almost) rigid are discussed, among which is a generalization of Mason's ABC-theorem.
We strengthen certain results concerning actions of $\left( \mathbb{C},\,+ \right)$ on ${{\mathbb{C}}^{3}}$ and embeddings of ${{\mathbb{C}}^{2}}$ in ${{\mathbb{C}}^{3}}$, and show that these results are in fact valid over any field of characteristic zero.
A smooth affine surface $X$ defined over the complex field $\mathbb{C}$ is an $\text{M}{{\text{L}}_{0}}$ surface if the Makar–Limanov invariant $\text{ML(}X\text{)}$ is trivial. In this paper we study the topology and geometry of $\text{M}{{\text{L}}_{0}}$ surfaces. Of particular interest is the question: Is every curve $C$ in $X$ which is isomorphic to the affine line a fiber component of an ${{\mathbb{A}}^{1}}$-fibration on $X$? We shall show that the answer is affirmative if the Picard number $\rho (X)\,=\,0$, but negative in case $\rho (X)\,\ge \,1$. We shall also study the ascent and descent of the $\text{M}{{\text{L}}_{0}}$ property under proper maps.
We classify normal affine surfaces with trivial Makar-Limanov invariant and finite Picard group of the smooth locus, realizing them as open subsets of weighted projective planes. We also show that such a surface admits, up to conjugacy, one or two ${{G}_{a}}$-actions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.