We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let 𝔟 be the Borel subalgebra of the Lie algebra 𝔰𝔩2 and V2 be the simple two-dimensional 𝔰𝔩2-module. For the universal enveloping algebra $\[{\cal A}: = U(\gb \ltimes {V_2})\]$ of the semi-direct product 𝔟⋉V2 of Lie algebras, the prime, primitive and maximal spectra are classified. Please approve edit to the sentence “The sets of completely prime…”.The sets of completely prime ideals of $\[{\cal A}\]$ are described. The simple unfaithful $\[{\cal A}\]$-modules are classified and an explicit description of all prime factor algebras of $\[{\cal A}\]$ is given. The following classes of simple U(𝔟⋉V2)-modules are classified: the Whittaker modules, the 𝕂[X]-torsion modules and the 𝕂[E]-torsion modules.
A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.
The prime, completely prime, maximal, and primitive spectra are classified for the universal enveloping algebra of the Schrödinger algebra. The explicit generators are given for all of these ideals. A counterexample is constructed to the conjecture of Cheng and Zhang about nonexistence of simple singular Whittaker modules for the Schrödinger algebra (and all such modules are classified). It is proved that the conjecture holds ‘generically’.
A classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer ${{C}_{S}}(H)$ (and some of its prime factor algebras) of the Cartan element $H$ in the universal enveloping algebra $S$ of the Schrödinger (Lie) algebra. The simple ${{C}_{S}}(H)$-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra $S$ (over the centre). It is proved that some (prime) factor algebras of $S$ and ${{C}_{S}}(H)$ are tensor homological$/$Krull minimal.
We study the injective hulls of faithful characteristic zero finite dimensional irreducible representations of uniform nilpotent pro-p groups, seen as modules over their corresponding Iwasawa algebras. Using this we prove that the kernels of these representations are classically localisable.
Let $G$ be a compact $p$-adic analytic group and let $\Lambda_G$ be its completed group algebra with coefficient ring the $p$-adic integers $\mathbb{Z}_p$. We show that the augmentation ideal in $\Lambda_G$ of a closed normal subgroup $H$ of $G$ is localisable if and only if $H$ is finite-by-nilpotent, answering a question of Sujatha. The localisations are shown to be Auslander-regular rings with Krull and global dimensions equal to dim $H$. It is also shown that the minimal prime ideals and the prime radical of the $\mathbb{F}_p$-version $\Omega_G$ of $\Lambda_G$ are controlled by $\Omega_{\Delta^+}$, where $\Delta^+$ is the largest finite normal subgroup of $G$. Finally, we prove a conjecture of Ardakov and Brown [1].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.