We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful.
Recently, a modified version of this was introduced in triangulated categories other than the derived category of a ring. A triangulated category is approximable if this modified procedure is possible. Not surprisingly this has proved a powerful tool. For example: the fact that $\mathsf {D}_{\mathsf {qc}}( X )$ is approximable when X is a quasi compact, separated scheme led to major improvements on old theorems due to Bondal, Van den Bergh and Rouquier.
In this article, we prove that, under weak hypotheses, the recollement of two approximable triangulated categories is approximable. In particular, this shows many of the triangulated categories that arise in noncommutative algebraic geometry are approximable. Furthermore, the lemmas and techniques developed in this article form a powerful toolbox which, in conjunction with the groundwork laid in [16], has interesting applications in existing and forthcoming work by the authors.
We show that relative Calabi–Yau structures on noncommutative moment maps give rise to (quasi-)bisymplectic structures, as introduced by Crawley-Boevey–Etingof–Ginzburg (in the additive case) and Van den Bergh (in the multiplicative case). We prove along the way that the fusion process (a) corresponds to the composition of Calabi–Yau cospans with ‘pair-of-pants’ ones and (b) preserves the duality between non-degenerate double quasi-Poisson structures and quasi-bisymplectic structures.
As an application, we obtain that Van den Bergh’s Poisson structures on the moduli spaces of representations of deformed multiplicative preprojective algebras coincide with the ones induced by the $2$-Calabi–Yau structures on (dg-versions of) these algebras.
Let $R$ be a strongly $\mathbb {Z}^2$-graded ring, and let $C$ be a bounded chain complex of finitely generated free $R$-modules. The complex $C$ is $R_{(0,0)}$-finitely dominated, or of type $FP$ over $R_{(0,0)}$, if it is chain homotopy equivalent to a bounded complex of finitely generated projective $R_{(0,0)}$-modules. We show that this happens if and only if $C$ becomes acyclic after taking tensor product with a certain eight rings of formal power series, the graded analogues of classical Novikov rings. This extends results of Ranicki, Quinn and the first author on Laurent polynomial rings in one and two indeterminates.
This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories $\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$ with $\mathcal{C}$ an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory $\mathcal{T}$ of $\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$ is constructed. Some applications of these two results include the equivalence of Grothendieck groups $K_0(\mathcal{C})$ and $K_0(\mathcal{T})$, the existences of a new abelian model structure on the category of complexes $\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$, and a t-structure on the derived category $\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$.
We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some homological data and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by “spread modules,” which are sometimes called “interval modules” in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that the free abelian group generated by the “single-source” spread modules gives rise to a new invariant which is finer than the rank invariant.
Given a negatively graded Calabi-Yau algebra, we regard it as a DG algebra with vanishing differentials and study its cluster category. We show that this DG algebra is sign-twisted Calabi-Yau and realise its cluster category as a triangulated hull of an orbit category of a derived category and as the singularity category of a finite-dimensional Iwanaga-Gorenstein algebra. Along the way, we give two results that stand on their own. First, we show that the derived category of coherent sheaves over a Calabi-Yau algebra has a natural cluster tilting subcategory whose dimension is determined by the Calabi-Yau dimension and the a-invariant of the algebra. Second, we prove that two DG orbit categories obtained from a DG endofunctor and its homotopy inverse are quasi-equivalent. As an application, we show that the higher cluster category of a higher representation infinite algebra is triangle equivalent to the singularity category of an Iwanaga-Gorenstein algebra, which is explicitly described. Also, we demonstrate that our results generalise the context of Keller–Murfet–Van den Bergh on the derived orbit category involving a square root of the AR translation.
We present the concept of cotorsion pairs cut along subcategories of an abelian category. This provides a generalization of complete cotorsion pairs, and represents a general framework to find approximations restricted to certain subcategories. We also exhibit some connections between cut cotorsion pairs and Auslander–Buchweitz approximation theory, by considering relative analogs for Frobenius pairs and Auslander–Buchweitz contexts. Several applications are given in the settings of relative Gorenstein homological algebra, chain complexes, and quasi-coherent sheaves, as well as to characterize some important results on the Finitistic Dimension Conjecture, the existence of right adjoints of quotient functors by Serre subcategories, and the description of cotorsion pairs in triangulated categories as co-t-structures.
In this paper, we introduce and study the Gorenstein relative homology theory for unbounded complexes of modules over arbitrary associative rings, which is defined using special Gorenstein flat precovers. We compare the Gorenstein relative homology to the Tate/unbounded homology and get some results that improve the known ones.
The symmetric group on a set acts transitively on the set of its subsets of a fixed size. We define homomorphisms between the corresponding permutation modules, defined over a field of characteristic two, which generalize the boundary maps from simplicial homology. The main results determine when these chain complexes are exact and when they are split exact. As a corollary we obtain a new explicit construction of the basic spin modules for the symmetric group.
In order to better unify the tilting theory and the Auslander–Reiten theory, Xi introduced a general transpose called the relative transpose. Originating from this, we introduce and study the cotranspose of modules with respect to a left A-module T called n-T-cotorsion-free modules. Also, we give many properties and characteristics of n-T-cotorsion-free modules under the help of semi-Wakamatsu-tilting modules AT.
Approximation sequences and derived equivalences occur frequently in the research of mutation of tilting objects in representation theory, algebraic geometry and noncommutative geometry. In this paper, we introduce symmetric approximation sequences in additive categories and weakly n-angulated categories which include (higher) Auslander-Reiten sequences (triangles) and mutation sequences in algebra and geometry, and show that such sequences always give rise to derived equivalences between the quotient rings of endomorphism rings of objects in the sequences modulo some ghost and coghost ideals.
For a finite quiver Q without sources, we consider the corresponding radical square zero algebra A. We construct an explicit compact generator for the homotopy category of acyclic complexes of projective A-modules. We call such a generator the projective Leavitt complex of Q. This terminology is justified by the following result: the opposite differential graded endomorphism algebra of the projective Leavitt complex of Q is quasi-isomorphic to the Leavitt path algebra of Qop. Here, Qop is the opposite quiver of Q, and the Leavitt path algebra of Qop is naturally ${\open Z}$-graded and viewed as a differential graded algebra with trivial differential.
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
Let R be an arbitrary ring. We introduce and study a generalization of injective and flat complexes of modules, called weak injective and weak flat complexes of modules respectively. We show that a complex C is weak injective (resp. weak flat) if and only if C is exact and all cycles of C are weak injective (resp. weak flat) as R-modules. In addition, we discuss the weak injective and weak flat dimensions of complexes of modules. Finally, we show that the category of weak injective (resp. weak flat) complexes is closed under pure subcomplexes, pure epimorphic images and direct limits. As a result, we then determine the existence of weak injective (resp. weak flat) covers and preenvelopes of complexes.
Let $R$ be a commutative ring. In this paper we study the behavior of Gorenstein homological dimensions of a homologically bounded $R$-complex under special base changes to the rings $R_{x}$ and $R/xR$, where $x$ is a regular element in $R$. Our main results refine some known formulae for the classical homological dimensions. In particular, we provide the Gorenstein counterpart of a criterion for projectivity of finitely generated modules, due to Vasconcelos.
In this paper we prove a version of curved Koszul duality for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{Z}/2\mathbb{Z}$-graded curved coalgebras and their cobar differential graded algebras. A curved version of the homological perturbation lemma is also obtained as a useful technical tool for studying curved (co)algebras and precomplexes. The results of Koszul duality can be applied to study the category of matrix factorizations $\mathsf{MF}(R,W)$. We show how Dyckerhoff’s generating results fit into the framework of curved Koszul duality theory. This enables us to clarify the relationship between the Borel–Moore Hochschild homology of curved (co)algebras and the ordinary Hochschild homology of the category $\mathsf{MF}(R,W)$. Similar results are also obtained in the orbifold case and in the graded case.
“Co-Frobenius” coalgebras were introduced as dualizations of Frobenius algebras. We previously showed that they admit left-right symmetric characterizations analogous to those of Frobenius algebras. We consider the more general quasi-co-Frobenius $\left( \text{QcF} \right)$ coalgebras. The first main result in this paper is that these also admit symmetric characterizations: a coalgebra is $\text{QcF}$ if it is weakly isomorphic to its (left, or right) rational dual $\text{Rat}\left( {{C}^{*}} \right)$ in the sense that certain coproduct or product powers of these objects are isomorphic. Fundamental results of Hopf algebras, such as the equivalent characterizations of Hopf algebras with nonzero integrals as left (or right) co-Frobenius, $\text{QcF}$, semiperfect or with nonzero rational dual, as well as the uniqueness of integrals and a short proof of the bijectivity of the antipode for such Hopf algebras all follow as a consequence of these results. This gives a purely representation theoretic approach to many of the basic fundamental results in the theory of Hopf algebras. Furthermore, we introduce a general concept of Frobenius algebra, which makes sense for infinite dimensional and for topological algebras, and specializes to the classical notion in the finite case. This will be a topological algebra $A$ that is isomorphic to its complete topological dual ${{A}^{\vee }}$. We show that $A$ is a (quasi)Frobenius algebra if and only if $A$ is the dual ${{C}^{*}}$ of a (quasi)co-Frobenius coalgebra $C$. We give many examples of co-Frobenius coalgebras and Hopf algebras connected to category theory, homological algebra and the newer $q$-homological algebra, topology or graph theory, showing the importance of the concept.
We show that if the given cotorsion pair in the category of modules is complete and hereditary, then both of the induced cotorsion pairs in the category of complexes are complete. We also give a cofibrantly generated model structure that can be regarded as a generalization of the projective model structure.
In a paper from 2002, Hovey introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce: the Gorenstein flat model structure. The homotopy category with respect to each of these is called the stable module category of R. If such a ring R has finite global dimension, the graded ring R[x]/(x2) is Gorenstein and the three associated Gorenstein model structures on R[x]/(x2)-Mod, the category of graded R[x]/(x2)-modules, are nothing more than the usual projective, injective and flat model structures on Ch(R), the category of chain complexes of R-modules. Although these correspondences only recover these model structures on Ch(R) when R has finite global dimension, we can set R = ℤ and use general techniques from model category theory to lift the projective model structure from Ch(ℤ) to Ch(R) for an arbitrary ring R. This shows that homological algebra is a special case of Gorenstein homological algebra. Moreover, this method of constructing and lifting model structures carries through when ℤ[x]/(x2) is replaced by many other graded Gorenstein rings (or Hopf algebras, which lead to monoidal model structures). This gives us a natural way to generalize both chain complexes over a ring R and the derived category of R and we give some examples of such generalizations.
The positive cohomology groups of a finite group acting on a ring vanish when the ring has a norm one element. In this note we give explicit homotopies on the level of cochains when the group is cyclic, which allows us to express any cocycle of a cyclic group as the coboundary of an explicit cochain. The formulas in this note are closely related to the effective problems considered in previous joint work with Eli Aljadeff.