We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let V be a finite dimensional vector space over the field with p elements, where p is a prime number. Given arbitrary $\alpha ,\beta \in \mathrm {GL}(V)$, we consider the semidirect products $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $, and show that if $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $ are isomorphic, then $\alpha $ must be similar to a power of $\beta $ that generates the same subgroup as $\beta $; that is, if H and K are cyclic subgroups of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$, then H and K must be conjugate subgroups of $\mathrm {GL}(V)$. If we remove the cyclic condition, there exist examples of nonisomorphic, let alone nonconjugate, subgroups H and K of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$. Even if we require that noncyclic subgroups H and K of $\mathrm {GL}(V)$ be abelian, we may still have $V\rtimes H\cong V\rtimes K$ with H and K nonconjugate in $\mathrm {GL}(V)$, but in this case, H and K must at least be isomorphic. If we replace V by a free module U over ${\mathbb {Z}}/p^m{\mathbb {Z}}$ of finite rank, with $m>1$, it may happen that $U\rtimes H\cong U\rtimes K$ for nonconjugate cyclic subgroups of $\mathrm {GL}(U)$. If we completely abandon our requirements on V, a sufficient criterion is given for a finite group G to admit nonconjugate cyclic subgroups H and K of $\mathrm {Aut}(G)$ such that $G\rtimes H\cong G\rtimes K$. This criterion is satisfied by many groups.
We prove that centralisers of elements in [finitely generated free]-by-cyclic groups are computable. As a corollary, given two conjugate elements in a [finitely generated free]-by-cyclic group, the set of conjugators can be computed and the conjugacy problem with context-free constraints is decidable. We pose several problems arising naturally from this work.
We construct finitely generated torsion-free solvable groups G that have infinite rank, but such that all finitely generated torsion-free metabelian subquotients of G are virtually abelian. In particular all finitely generated metabelian subgroups of G are virtually abelian. The existence of such groups shows that there is no “torsion-free version” of P. Kropholler’s theorem, which characterises solvable groups of infinite rank via their metabelian subquotients.
In this paper, we study intersection configurations – which describe the behaviour of multiple (finite) intersections of subgroups with respect to finite generability – in the realm of free and free times free-abelian (FTFA) groups. We say that a configuration is realizable in a group $G$ if there exist subgroups $H_1,\ldots, H_k \leqslant G$ realizing it. It is well known that free groups ${\mathbb {F}_{n}}$ satisfy the Howson property: the intersection of any two finitely generated subgroups is again finitely generated. We show that the Howson property is indeed the only obstruction for multiple intersection configurations to be realizable within nonabelian free groups. On the contrary, FTFA groups ${\mathbb {F}_{n}} \times \mathbb {Z}^m$ are well known to be non-Howson. We also study multiple intersections within FTFA groups, providing an algorithm to decide, given $k\geq 2$ finitely generated subgroups, whether their intersection is again finitely generated and, in the affirmative case, compute a ‘basis’ for it. We finally prove that any intersection configuration is realizable in an FTFA group ${\mathbb {F}_{n}} \times \mathbb {Z}^m$, for $n\geq 2$ and large enough $m$. As a consequence, we exhibit finitely presented groups where every intersection configuration is realizable.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
We study the
$E_2$
-algebra
$\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$
consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion
$\Omega B\Lambda \mathfrak {M}_{*,1}$
: it is the product of
$\Omega ^{\infty }\mathbf {MTSO}(2)$
with a certain free
$\Omega ^{\infty }$
-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups
$\Gamma _{g,n}$
with
$g\geqslant 0$
and
$n\geqslant 1$
.
We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.
We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$, where $C$ is a finite group and $F$ a non-abelian free group.
A well-known conjecture is that all finitely presented groups have semistable fundamental groups at infinity. A class of groups whose members have not been shown to be semistable at infinity is the class ${\mathcal{A}}$ of finitely presented groups that are ascending HNN-extensions with finitely generated base. The class ${\mathcal{A}}$ naturally partitions into two non-empty subclasses, those that have “bounded” and “unbounded” depth. Using new methods introduced in a companion paper we show those of bounded depth have semistable fundamental group at infinity. Ascending HNN extensions produced by Ol’shanskii–Sapir and Grigorchuk (for other reasons), and once considered potential non-semistable examples are shown to have bounded depth. Finally, we devise a technique for producing explicit examples with unbounded depth. These examples are perhaps the best candidates to date in the search for a group with non-semistable fundamental group at infinity.
We determine the order of the automorphism group Aut$(W)$ for each member $W$ of an important family of finite $p$-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.
In the first half of this paper, all the limits of irreducible characters of Gn = 𝔖n(T) as n → ∞ are calculated. The set of all continuous limit functions on G = 𝔖 ∞(T) is exactly equal to the set of all characters of G determined in [HH6]. We give a necessary and sufficient condition for a series of irreducible characters of Gn to have a continuous limit and also such a condition to have a discontinuous limit. In the second half, we study the limits of characters of certain induced representations of Gn which are usually reducible. The limits turn out to be characters of G, and we analyse which of irreducible components are responsible to these limits.
We compute commutativity degrees of wreath products of finite Abelian groups A and B. When B is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n2. This answers a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the number of conjugacy classes in such wreath products, and obtain an interesting elementary number-theoretic result.
Let $G=\left( \mathbb{Z}/a\rtimes \mathbb{Z}/b \right)\times \text{S}{{\text{L}}_{2}}\left( {{\mathbb{F}}_{p}} \right)$, and let $X\left( n \right)$ be an $n$-dimensional $CW$-complex of the homotopy type of an $n$-sphere. We study the automorphism group $\text{Aut}\left( G \right)$ in order to compute the number of distinct homotopy types of spherical space forms with respect to free and cellular $G$-actions on all $CW$-complexes $X\left( 2dn-1 \right)$, where $2d$ is the period of $G$. The groups $\varepsilon \left( X\left( 2dn-1 \right)/\mu \right)$ of self homotopy equivalences of space forms $X\left( 2dn-1 \right)/\mu$ associated with free and cellular $G$-actions $\mu$ on $X\left( 2dn-1 \right)$ are determined as well.
The uniserial $p$-adic space groups of coclass $r$ play a central role in the classification of the finite $p$-groups of coclass $r$. A practical algorithm to determine up to isomorphism the uniserial $p$-adic space groups of coclass $r$, where $p$ is an odd prime, is described. As an application, these groups are constructed or counted for some values on $p$ and $r$. For example, it is observed that there are 137 299 953 383 uniserial 3-adic space groups of coclass 4.
This paper proves bounds for the commutator width of a wreath product of two groups. As a corollary, it is shown that the commutator width of finite perfect linear groups of dimension 15 is unbounded. It follows that the covering number of these groups is unbounded. On the other hand, the commutator width of iterated wreath products of nonabelian finite simple groups is bounded by an absolute constant.
Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a twogenerator ordered group with these properties. Further, we establish subnormal verbal embedding of defect two of an arbitrary (soluble, fully ordered or torsion free) ordered group G into a group with these properties and of the same cardinality as G, and show in connection with a problem of Heineken that the defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered groups cannot in general be normal.
In this article we state and prove precise theorems on the homotopy classification of graded categorical groups and their homomorphisms. The results use equivariant group cohomology, and they are applied to show a treatment of the general equivariant group extension problem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.