We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.
Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
We construct finitely generated torsion-free solvable groups G that have infinite rank, but such that all finitely generated torsion-free metabelian subquotients of G are virtually abelian. In particular all finitely generated metabelian subgroups of G are virtually abelian. The existence of such groups shows that there is no “torsion-free version” of P. Kropholler’s theorem, which characterises solvable groups of infinite rank via their metabelian subquotients.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
Let G be a group that is either virtually soluble or virtually free, and let ω be a weight on G. We prove that if G is infinite, then there is some maximal left ideal of finite codimension in the Beurling algebra $\ell^1(G, \omega)$, which fails to be (algebraically) finitely generated. This implies that a conjecture of Dales and Żelazko holds for these Banach algebras. We then go on to give examples of weighted groups for which this property fails in a strong way. For instance, we describe a Beurling algebra on an infinite group in which every closed left ideal of finite codimension is finitely generated and which has many such ideals in the sense of being residually finite dimensional. These examples seem to be hard cases for proving Dales and Żelazko’s conjecture.
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
A group is said to have rational growth with respect to a generating set if the growth series is a rational function. It was shown by Parry that certain torus bundle groups of even trace exhibits rational growth. We generalize this result to a class of torus bundle groups with odd trace.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
A subgroup H of a group G is pronormal in G if each of its conjugates
$H^g$
in G is conjugate to it in the subgroup
$\langle H,H^g\rangle $
; a group is prohamiltonian if all of its nonabelian subgroups are pronormal. The aim of the paper is to show that a locally soluble group of (regular) cardinality in which all proper uncountable subgroups are prohamiltonian is prohamiltonian. In order to obtain this result, it is proved that the class of prohamiltonian groups is detectable from the behaviour of countable subgroups. Examples are exhibited to show that there are uncountable prohamiltonian groups that do not behave very well. Finally, it is shown that prohamiltonicity can sometimes be detected through the analysis of the finite homomorphic images of a group.
We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.
Let G be a finite group and
$\psi (G) = \sum _{g \in G} o(g)$
, where
$o(g)$
denotes the order of
$g \in G$
. There are many results on the influence of this function on the structure of a finite group G.
In this paper, as the main result, we answer a conjecture of Tărnăuceanu. In fact, we prove that if G is a group of order n and
$\psi (G)>31\psi (C_n)/77$
, where
$C_n$
is the cyclic group of order n, then G is supersolvable. Also, we prove that if G is not a supersolvable group of order n and
$\psi (G) = 31\psi (C_n)/77$
, then
$G\cong A_4 \times C_m$
, where
$(m, 6)=1$
.
Finally, Herzog et al. in (2018, J. Algebra, 511, 215–226) posed the following conjecture: If
$H\leq G$
, then
$\psi (G) \unicode[stix]{x02A7D} \psi (H) |G:H|^2$
. By an example, we show that this conjecture is not satisfied in general.
We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity
$(\phi (V), W)$
takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension
$2$
we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits.
For a group G, we define a graph
$\Delta (G)$
by letting
$G^{\scriptsize\#}=G\setminus {\{\,1\,\}} $
be the set of vertices and by drawing an edge between distinct elements
$x,y\in G^{\scriptsize\#}$
if and only if the subgroup
$\langle x,y\rangle $
is cyclic. Recall that a Z-group is a group where every Sylow subgroup is cyclic. In this short note, we investigate
$\Delta (G)$
for a Z-group G.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
According to Mazhuga’s theorem, the fundamental group H of anyconnected surface, possibly except for the Klein bottle, is a retract of each finitely generated group containing H as a verbally closed subgroup. We prove that the Klein bottle group is indeed an exception but has a very close property.
For a finite group $G$, define $l(G)=(\prod _{g\in G}o(g))^{1/|G|}/|G|$, where $o(g)$ denotes the order of $g\in G$. We prove that if $l(G)>l(A_{5}),l(G)>l(A_{4}),l(G)>l(S_{3}),l(G)>l(Q_{8})$ or $l(G)>l(C_{2}\times C_{2})$, then $G$ is solvable, supersolvable, nilpotent, abelian or cyclic, respectively.
Braces were introduced by Rump in 2007 as a useful tool in the study of the set-theoretic solutions of the Yang–Baxter equation. In fact, several aspects of the theory of finite left braces and their applications in the context of the Yang–Baxter equation have been extensively investigated recently. The main aim of this paper is to introduce and study two finite brace theoretical properties associated with nilpotency, and to analyse their impact on the finite solutions of the Yang–Baxter equation.
Let G be a polycyclic, metabelian or soluble of type (FP)∞ group such that the class Rat(G) of all rational subsets of G is a Boolean algebra. Then, G is virtually abelian. Every soluble biautomatic group is virtually abelian.
The subgroup commutativity degree of a group $G$ is the probability that two subgroups of $G$ commute, or equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0 as the size of the group tends to infinity. This also holds for the family of projective special linear groups over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we show that the family of finite $P$-groups also has this property.
We show that two metacyclic groups of the following types are isomorphic if they have the same character tables: (i) split metacyclic groups, (ii) the metacyclic p-groups and (iii) the metacyclic {p, q}-groups, where p, q are odd primes.
Let $G$ be a finite group and $H$, $K$ two subgroups of $G$. A group $G$ is said to be a mutually $m$-permutable product of $H$ and $K$ if $G\,=\,HK$ and every maximal subgroup of $H$ permutes with $K$ and every maximal subgroup of $K$ permutes with $H$. In this paper, we investigate the structure of a finite group that is a mutually $m$-permutable product of two subgroups under the assumption that its maximal subgroups are totally smooth.