We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sufficient conditions are obtained for the oscillation of a general form of a linear second-order differential equation with discontinuous solutions. The innovations are that the impulse effects are in mixed form and the results obtained are applicable even if the impulses are small. The novelty of the results is demonstrated by presenting an example of an oscillating equation to which previous oscillation theorems fail to apply.
In this paper, we consider an eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary conditions. The location of eigenvalues on real axis, the structure of root subspaces and the oscillation properties of eigenfunctions of this problem are investigated, and asymptotic formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these properties, we establish sufficient conditions for subsystems of root functions of the considered problem to form a basis in the space $L_p,1 < p < \infty$.
Let $(z_k)$ be a sequence of distinct points in the unit disc $\mathbb {D}$ without limit points there. We are looking for a function $a(z)$ analytic in $\mathbb {D}$ and such that possesses a solution having zeros precisely at the points $z_k$, and the resulting function $a(z)$ has ‘minimal’ growth. We focus on the case of non-separated sequences $(z_k)$ in terms of the pseudohyperbolic distance when the coefficient $a(z)$ is of zero order, but $\sup _{z\in {\mathbb D}}(1-|z|)^p|a(z)| = + \infty$ for any $p > 0$. We established a new estimate for the maximum modulus of $a(z)$ in terms of the functions $n_z(t)=\sum \nolimits _{|z_k-z|\le t} 1$ and $N_z(r) = \int_0^r {{(n_z(t)-1)}^ + } /t{\rm d}t.$ The estimate is sharp in some sense. The main result relies on a new interpolation theorem.
We establish new oscillation criteria for nonlinear differential equations of second order. The results here make some improvements of oscillation criteria of Butler, Erbe, and Mingarelli [2], Wong [8, 9], and Philos and Purnaras [6].
In 1961, J. Barrett showed that if the first conjugate point ${{\eta }_{1}}\left( a \right)$ exists for the differential equation ${{\left( r\left( x \right){y}'' \right)}^{\prime \prime }}=p\left( x \right)y$, where $r\left( x \right)\,>\,0$ and $p\left( x \right)\,>\,0$, then so does the first systems-conjugate point ${{\hat{\eta }}_{1}}\left( a \right)$. The aim of this note is to extend this result to the general equation with middle term ${{\left( q\left( x \right){y}' \right)}^{\prime }}$ without further restriction on $q\left( x \right)$, other than continuity.
We improve several recent results in the asymptotic integration theory of nonlinear ordinary differential equations via a variant of the method devised by J. K. Hale and N. Onuchic The results are used for investigating the existence of positive solutions to certain reaction-diffusion equations.
Starting from results of Dubé and Mingarelli, Wahlén, and Ehrström, who give conditions that ensure the existence and uniqueness of nonnegative nondecreasing solutions asymptotically constant of the equation
we have been able to reduce their hypotheses in order to obtain the same existence results, at the expense of losing the uniqueness part. The main tool they used is the Banach Fixed Point Theorem, while ours has been the Schauder Fixed Point Theorem together with one version of the Arzelà-Ascoli Theorem.
The existence of periodic solutions for the nonlinear asymmetric oscillator $ x''{+}\alpha x^+{-}\beta x^- {=} h(t),\qquad (' = d/dt) $ is discussed, where $\alpha, \beta$ are positive constants satisfying $ {1}/{\sqrt{\alpha}} + {1}/{\sqrt{\beta}} = {2}/{n} $ for some positive integer $n\in {\bf \mathbb{N}}$ and $h(t)\in L^\infty(0,2\pi)$ is $2\pi$-periodic with $x^{\pm}=\max\{\pm x, 0\}$.
A global existence result for solutions $u(t)$ of the differential equation $x^{\prime \prime }+f(t,x)=p(t)$, $t\geq t_0\geq 1$, that can be written as $u(t)=P(t)+o(1)$ for all large $t$, where $P^{\prime \prime}(t)=p(t)$, is established by means of the Schauder-Tikhonov theorem. It generalizes the recent work of Lipovan [On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations, Glasgow Math. J.45 (2003), 179–87] and allows for a unifying treatment of the existence problems concerning asymptotically linear and oscillatory solutions of second order nonlinear differential equations.
For a given Sturm-Liouville equation whose leading coefficient function changes sign, we establish inequalities among the eigenvalues for any coupled self-adjoint boundary condition and those for two corresponding separated self-adjoint boundary conditions. By a recent result of Binding and Volkmer, the eigenvalues (unbounded from both below and above) for a separated self-adjoint boundary condition can be numbered in terms of the Prüfer angle; and our inequalities can then be used to index the eigenvalues for any coupled self-adjoint boundary condition. Under this indexing scheme, we determine the discontinuities of each eigenvalue as a function on the space of such Sturm-Liouville problems, and its range as a function on the space of self-adjoint boundary conditions. We also relate this indexing scheme to the number of zeros of eigenfunctions. In addition, we characterize the discontinuities of each eigenvalue under a different indexing scheme.
By means of generalized Riccati transformation techniques and generalized exponential functions, some oscillation criteria are given for the nonlinear dynamic equation \[ (p(t)x^{\Delta} (t))^{\Delta}+q(t)(f\circ x^{\sigma})=0 \] on time scales. The results are also applied to linear and nonlinear dynamic equations with damping, and some sufficient conditions are obtained for the oscillation of all solutions.
We investigate the bifurcation of limit cycles in one-parameter unfoldings of quadractic differential systems in the plane having a degenerate critical point at infinity. It is shown that there are three types of quadratic systems possessing an elliptic critical point which bifurcates from infinity together with eventual limit cycles around it. We establish that these limit cycles can be studied by performing a degenerate transformation which brings the system to a small perturbation of certain well-known reversible systems having a center. The corresponding displacement function is then expanded in a Puiseux series with respect to the small parameter and its coefficients are expressed in terms of Abelian integrals. Finally, we investigate in more detail four of the cases, among them the elliptic case (Bogdanov-Takens system) and the isochronous center ${{\mathcal{S}}_{3}}$. We show that in each of these cases the corresponding vector space of bifurcation functions has the Chebishev property: the number of the zeros of each function is less than the dimension of the vector space. To prove this we construct the bifurcation diagram of zeros of certain Abelian integrals in a complex domain.
Some oscillation criteria are given for the second order neutral delay differential equation
where τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.
In this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.
In this paper, we consider the oscillatory behavior of the second order neutral delay differential equation
where t ≥ t0,T and σ are positive constants, a,p, q € C(t0, ∞), R),f ∊ C[R, R]. Some sufficient conditions are established such that the above equation is oscillatory. The obtained oscillation criteria generalize and improve a number of known results about both neutral and delay differential equations.
Consider the second order nonlinear differential equation
y" + a(t)f(y) = 0
where a(t) ∈ C[0,∞),f(y) GC1 (-∞, ∞),ƒ'(y) ≥ 0 and yf(y) > 0 for y ≠ 0. Furthermore, f(y) also satisfies either a superlinear or a sublinear condition, which covers the prototype nonlinear function f(y) = |γ|γ sgny with γ > 1 and 0 < γ < 1 known as the Emden-Fowler case. The coefficient a(t) is allowed to be negative for arbitrarily large values of t. Oscillation criteria involving integral averages of a(t) due to Wintner, Hartman, and recently Butler, Erbe and Mingarelli for the linear equation are shown to remain valid for the general equation, subject to certain nonlinear conditions on f(y). In particular, these results are therefore valid for the Emden-Fowler equation.
TWO comparison theorems, one of pointwise type and one of integral type, will be obtained for linear elliptic equations of order 2m on an exterior domain in Rn
We study the asymptotic properties of positive solutions to the semilinear equation — Δu = f(x, u). Existence and asymptotic estimates are obtained for solutions in exterior domains, as well as entire solutions, for n ≧ 2. The study uses integral operator equations in Rn, and convergence theorems for solutions of Poisson's equation in bounded domains. A consequence of the method is that more precise estimates can be obtained for the growth of solutions at infinity, than have been obtained by other methods. As a special case the results are applied to the generalized Emden-Fowler equation — Δu = p(x)uγ, for γ > 0