We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The local structure of rotationally symmetric Finsler surfaces with vanishing flag curvature is completely determined in this paper. A geometric method for constructing such surfaces is introduced. The construction begins with a planar vector field X that depends on two functions of one variable. It is shown that the flow of X could be used to generate a generalized Finsler surface with zero flag curvature. Moreover, this generalized structure reduces to a regular Finsler metric if and only if X has an isochronous center. By relating X to a Liénard system, we obtain the isochronicity condition and discover numerous new examples of complete flat Finsler surfaces, depending on an odd function and an even function.
Given any rectangular polyhedron
$3$
-manifold
$\mathcal {P}$
tiled with unit cubes, we find infinitely many explicit directions related to cubic algebraic numbers such that all half-infinite geodesics in these directions are uniformly distributed in
$\mathcal {P}$
.
We prove by methods of harmonic analysis a result on the existence of solutions for twisted cohomological equations on translation surfaces with loss of derivatives at most
$3+$
in Sobolev spaces. As a consequence we prove that product translation flows on (three-dimensional) translation manifolds which are products of a (higher-genus) translation surface with a (flat) circle are stable in the sense of A. Katok. In turn, our result on product flows implies a stability result of time-
$\tau $
maps of translation flows on translation surfaces.
The ergodic properties of two uncoupled oscillators, one horizontal and one vertical, residing in a class of non-rectangular star-shaped polygons with only vertical and horizontal boundaries and impacting elastically from its boundaries are studied. We prove that the iso-energy level sets topology changes non-trivially; the flow on level sets is always conjugated to a translation flow on a translation surface, yet, for some segments of partial energies the genus of the surface is strictly greater than
$1$
. When at least one of the oscillators is unharmonic, or when both are harmonic and non-resonant, we prove that for almost all partial energies, including the impacting ones, the flow on level sets is uniquely ergodic. When both oscillators are harmonic and resonant, we prove that there exist intervals of partial energies on which periodic ribbons and additional ergodic components coexist. We prove that for almost all partial energies in such segments the motion is uniquely ergodic on the part of the level set that is not occupied by the periodic ribbons. This implies that ergodic averages project to piecewise smooth weighted averages in the configuration space.
In L. W. Flinn’s PhD thesis published in 1972, the author conjectured that weakly expansive flows are also expansive flows. In this paper we use the horocycle flow on compact Riemann surfaces of constant negative curvature to show that Flinn’s conjecture is not true.
In this survey we prove the sharpest results on the loss of Sobolev regularity for solutions of the cohomological equation for translation flows on translation surfaces, available to the methods developed by the author in Forni [Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus. Ann. of Math. (2)146(2) (1997), 295–344] and Forni [Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. of Math. (2)155(1) (2002), 1–103]. The paper was mostly written between 2005 and 2006 while the author was at the University of Toronto, Canada, and was posted on arXiv in July 2007 [Forni. Sobolev regularity of solutions of the cohomological equation. Preprint, 2007, arXiv:0707.0940v2]. In an updated introduction we describe our results, taking into account later work on the problem and relevant recent progress in the field of Teichmüller dynamics, interval exchange transformations and translation flows.
We describe in this article the dynamics of a one-parameter family of affine interval exchange transformations. This amounts to studying the directional foliations of a particular dilatation surface introduced in Duryev et al [Affine surfaces and their Veech groups. Preprint, 2016, arXiv:1609.02130], the Disco surface. We show that this family displays various dynamical behaviours: it is generically dynamically trivial but for a Cantor set of parameters the leaves of the foliations accumulate to a (transversely) Cantor set. This study is achieved through analysis of the dynamics of the Veech group of this surface combined with a modified version of Rauzy induction in the context of affine interval exchange transformations.
In this paper we prove that the set of translation structures for which the corresponding vertical translation flows are disjoint with its inverse contains a $G_{\unicode[STIX]{x1D6FF}}$-dense subset in every non-hyperelliptic connected component of the moduli space ${\mathcal{M}}$. This is in contrast to hyperelliptic case, where for every translation structure the associated vertical flow is reversible, i.e., it is isomorphic to its inverse by an involution. To prove the main result, we study limits of the off-diagonal 3-joinings of special representations of vertical translation flows. Moreover, we construct a locally defined continuous embedding of the moduli space into the space of measure-preserving flows to obtain the $G_{\unicode[STIX]{x1D6FF}}$-condition. Moreover, as a by-product we get that in every non-hyperelliptic connected component of the moduli space there is a dense subset of translation structures whose vertical flow is reversible.
In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodal multiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used for multiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results show that one can improve the accuracy of the simulations when a global information is used.
We give some extension to theorems of Jiménez López and Soler López concerning the topological characterization for limit sets of continuous flows on closed orientable surfaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.