We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a state $\omega$ on a C$^{*}$-algebra $A$, we characterize all states $\rho$ in the weak* closure of the set of all states of the form $\omega \circ \varphi$, where $\varphi$ is a map on $A$ of the form $\varphi (x)=\sum \nolimits _{i=1}^{n}a_i^{*}xa_i,$$\sum \nolimits _{i=1}^{n}a_i^{*}a_i=1$ ($a_i\in A$, $n\in \mathbb {N}$). These are precisely the states $\rho$ that satisfy $\|\rho |J\|\leq \|\omega |J\|$ for each ideal $J$ of $A$. The corresponding question for normal states on a von Neumann algebra $\mathcal {R}$ (with the weak* closure replaced by the norm closure) is also considered. All normal states of the form $\omega \circ \psi$, where $\psi$ is a quantum channel on $\mathcal {R}$ (that is, a map of the form $\psi (x)=\sum \nolimits _ja_j^{*}xa_j$, where $a_j\in \mathcal {R}$ are such that the sum $\sum \nolimits _ja_j^{*}a_j$ converge to $1$ in the weak operator topology) are characterized. A variant of this topic for hermitian functionals instead of states is investigated. Maximally mixed states are shown to vanish on the strong radical of a C$^{*}$-algebra and for properly infinite von Neumann algebras the converse also holds.
We demonstrate how exact structures can be placed on the additive category of right operator modules over an operator algebra in order to discuss global dimension for operator algebras. The properties of the Haagerup tensor product play a decisive role in this.
We show that if G is an amenable group and H is a hyperbolic group, then the free product
$G\ast H$
is weakly amenable. A key ingredient in the proof is the fact that
$G\ast H$
is orbit equivalent to
$\mathbb{Z}\ast H$
.
We establish several new characterizations of amenable
$W^*$
- and
$C^*$
-dynamical systems over arbitrary locally compact groups. In the
$W^*$
-setting we show that amenability is equivalent to (1) a Reiter property and (2) the existence of a certain net of completely positive Herz–Schur multipliers of
$(M,G,\alpha )$
converging point weak* to the identity of
$G\bar {\ltimes }M$
. In the
$C^*$
-setting, we prove that amenability of
$(A,G,\alpha )$
is equivalent to an analogous Herz–Schur multiplier approximation of the identity of the reduced crossed product
$G\ltimes A$
, as well as a particular case of the positive weak approximation property of Bédos and Conti [On discrete twisted
$C^*$
-dynamical systems, Hilbert
$C^*$
-modules and regularity. Münster J. Math.5 (2012), 183–208] (generalized to the locally compact setting). When
$Z(A^{**})=Z(A)^{**}$
, it follows that amenability is equivalent to the 1-positive approximation property of Exel and Ng [Approximation property of
$C^*$
-algebraic bundles. Math. Proc. Cambridge Philos. Soc.132(3) (2002), 509–522]. In particular, when
$A=C_0(X)$
is commutative, amenability of
$(C_0(X),G,\alpha )$
coincides with topological amenability of the G-space
$(G,X)$
.
Let
$ H $
be a compact subgroup of a locally compact group
$ G $
. We first investigate some (operator) (co)homological properties of the Fourier algebra
$A(G/H)$
of the homogeneous space
$G/H$
such as (operator) approximate biprojectivity and pseudo-contractibility. In particular, we show that
$ A(G/H) $
is operator approximately biprojective if and only if
$ G/H $
is discrete. We also show that
$A(G/H)^{**}$
is boundedly approximately amenable if and only if G is compact and H is open. Finally, we consider the question of existence of weakly compact multipliers on
$A(G/H)$
.
In this paper, we characterize the multiple operator integrals mappings that are bounded on the Haagerup tensor product of spaces of compact operators. We show that such maps are automatically completely bounded and prove that this is equivalent to a certain factorization property of the symbol associated with the operator integral mapping. This generalizes a result by Juschenko-Todorov-Turowska on the boundedness of measurable multilinear Schur multipliers.
We study restriction and extension properties for states on ${{\text{C}}^{*}}$-algebras with an eye towards hyperrigidity of operator systems. We use these ideas to provide supporting evidence for Arveson’s hyperrigidity conjecture. Prompted by various characterizations of hyperrigidity in terms of states, we examine unperforated pairs of self-adjoint subspaces in a ${{\text{C}}^{*}}$-algebra. The configuration of the subspaces forming an unperforated pair is in some sense compatible with the order structure of the ambient ${{\text{C}}^{*}}$-algebra. We prove that commuting pairs are unperforated and obtain consequences for hyperrigidity. Finally, by exploiting recent advances in the tensor theory of operator systems, we show how the weak expectation property can serve as a flexible relaxation of the notion of unperforated pairs.
We obtain intertwining dilation theorems for non-commutative regular domains 𝒟f and non-commutative varieties 𝒱J in B(𝓗)n, which generalize Sarason and Szőkefalvi-Nagy and Foiaş's commutant lifting theorem for commuting contractions. We present several applications including a new proof for the commutant lifting theorem for pure elements in the domain 𝒟f (respectively, variety 𝒱J ) as well as a Schur-type representation for the unit ball of the Hardy algebra associated with the variety 𝒱J. We provide Andô-type dilations and inequalities for bi-domains 𝒟f ×c 𝒟g consisting of all pairs (X,Y ) of tuples X := (X1,…, Xn1) ∊ 𝒟f and Y := (Y1,…, Yn2) ∊ 𝒟g that commute, i.e. each entry of X commutes with each entry of Y . The results are new, even when n1 = n2 = 1. In this particular case, we obtain extensions of Andô's results and Agler and McCarthy's inequality for commuting contractions to larger classes of commuting operators. All the results are extended to bi-varieties 𝒱J1×c 𝒱J2, where 𝒱J1 and 𝒱J2 are non-commutative varieties generated by weak-operator-topology-closed two-sided ideals in non-commutative Hardy algebras. The commutative case and the matrix case when n1 = n2 = 1 are also discussed.
We prove a necessary and sufficient condition for embeddability of an operator system into ${\mathcal{O}}_{2}$. Using Kirchberg’s theorems on a tensor product of ${\mathcal{O}}_{2}$ and ${\mathcal{O}}_{\infty }$, we establish results on their operator system counterparts ${\mathcal{S}}_{2}$ and ${\mathcal{S}}_{\infty }$. Applications of the results, including some examples describing $C^{\ast }$-envelopes of operator systems, are also discussed.
In this paper, we study condition $C_{\hat{\ }}^{'}$, which is a projective tensor product analogue of condition $C'$. We show that the finite-dimensional $\text{OLLP}$ operator spaces have condition $C_{\hat{\ }}^{'}$, and ${{M}_{n}}\left( n\,>\,2 \right)$ does not have that property.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
We give a proof of the Khintchine inequalities in non-commutative $L_{p}$-spaces for all $0<p<1$. These new inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, for example, for the analogues of such random variables in free probability. We also prove a factorization for operators from a Hilbert space to a non-commutative $L_{p}$-space, which is new for $0<p<1$. We end by showing that Mazur maps are Hölder on semifinite von Neumann algebras.
For any pair M, N of von Neumann algebras such that the algebraic tensor product M ⊗ N admits more than one C*-norm, the cardinal of the set of C*-norms is at least 2ℵ0. Moreover, there is a family with cardinality 2ℵ0 of injective tensor product functors for C*-algebras in Kirchberg's sense. Let ${\mathbb B}$=∏nMn. We also show that, for any non-nuclear von Neumann algebra M⊂ ${\mathbb B}$(ℓ2), the set of C*-norms on ${\mathbb B}$ ⊗ M has cardinality equal to 22ℵ0.
We show that ${{L}^{\infty }}\left( \mu \right)$, in its capacity as multiplication operators on ${{L}^{p}}\left( \mu \right)$, is minimal as a $p$-operator space for a decomposable measure $\mu $. We conclude that ${{L}^{1}}\left( \mu \right)$ has a certain maximal type $p$-operator space structure that facilitates computations with ${{L}^{1}}\left( \mu \right)$ and the projective tensor product.
We prove that, for operator spaces V and W, the operator space V** ⊗hW** can be completely isometrically embedded into (V ⊗hW)**, ⊗h being the Haagerup tensor product. We also show that, for exact operator spaces V and W, a jointly completely bounded bilinear form on V × W can be extended uniquely to a separately w*-continuous jointly completely bounded bilinear form on V× W**. This paves the way to obtaining a canonical embedding of into with a continuous inverse, where is the operator space projective tensor product. Further, for C*-algebras A and B, we study the (closed) ideal structure of which, in particular, determines the lattice of closed ideals of completely.
Let A be a unital C*-algebra with the canonical (H) C*-bundle over the maximal ideal space of the centre of A, and let E(A) be the set of all elementary operators on A. We consider derivations on A which lie in the completely bounded norm closure of E(A), and show that such derivations are necessarily inner in the case when each fibre of is a prime C*-algebra. We also consider separable C*-algebras A for which is an (F) bundle. For these C*-algebras we show that the following conditions are equivalent: E(A) is closed in the operator norm; A as a Banach module over its centre is topologically finitely generated; fibres of have uniformly finite dimensions, and each restriction bundle of over a set where its fibres are of constant dimension is of finite type as a vector bundle.
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let ${{M}_{cb}}A(G)$ denote the completely bounded multipliers of $A(G)$, and let ${{A}_{Mcb}}\,(G)$ stand for the closure of $A(G)$ in ${{M}_{cb}}A(G)$. We characterize the norm one idempotents in ${{M}_{cb}}A(G)$: the indicator function of a set $E\,\subset \,G$ is a norm one idempotent in ${{M}_{cb}}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of ${{A}_{Mcb}}\,(G)$ with an approximate identity bounded by 1, and we characterize those $G$ for which ${{A}_{Mcb}}\,(G)$ is 1-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)
We show that the multiplier algebra of the Fourier algebra on a locally compact group $G$ can be isometrically represented on a direct sum on non-commutative ${{L}^{p}}$ spaces associated with the right von Neumann algebra of $G$. The resulting image is the idealiser of the image of the Fourier algebra. If these spaces are given their canonical operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the noncommutative ${{L}^{p}}$ spaces we construct and show that they are completely isometric to those considered recently by Forrest, Lee, and Samei. We improve a result of theirs about module homomorphisms. We suggest a definition of a Figa-Talamanca–Herz algebra built out of these non-commutative ${{L}^{p}}$ spaces, say ${{A}_{p}}(\hat{G})$. It is shown that ${{A}_{2}}(\hat{G})$ is isometric to ${{L}^{1}}(G)$, generalising the abelian situation.