We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show a result on propagation of the anisotropic Gabor wave front set for linear operators with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrödinger equation for the free particle. The Laplacian is replaced by any partial differential operator with constant coefficients, real symbol and order at least two.
This paper establishes the mapping properties of pseudo-differential operators and the Fourier integral operators on the weighted Morrey spaces with variable exponents and the weighted Triebel–Lizorkin–Morrey spaces with variable exponents. We obtain these results by extending the extrapolation theory to the weighted Morrey spaces with variable exponents. This extension also gives the mapping properties of Calderón–Zygmund operators on the weighted Hardy–Morrey spaces with variable exponents and the wavelet characterizations of the weighted Hardy–Morrey spaces with variable exponents.
The main result is that the ellipticity and the Fredholm property of a
$\Psi $
DO acting on Sobolev spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically temperate and its associated Planck function vanishes at infinity. The proof is essentially related to the following result that we prove for geodesically temperate Hörmander metrics: If
$\lambda \mapsto a_{\lambda }\in S(1,g)$
is a
$\mathcal {C}^N$
,
$0\leq N\leq \infty $
, map such that each
$a_{\lambda }^w$
is invertible on
$L^2$
, then the mapping
$\lambda \mapsto b_{\lambda }\in S(1,g)$
, where
$b_{\lambda }^w$
is the inverse of
$a_{\lambda }^w$
, is again of class
$\mathcal {C}^N$
. Additionally, assuming also the strong uncertainty principle for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very end, we give an example to illustrate our main result.
In this paper, we investigate the weighted multilinear boundedness properties of the maximal higher order Calderón commutator for the dimensions larger than two. We establish all weighted multilinear estimates on the product of the $L^{p}(\mathbb{R}^{d},w)$ space, including some peculiar endpoint estimates of the higher dimensional Calderón commutator.
where $\tau :{\open R}^n\to {\open R}^n$ is a general function. In particular, for the linear choices $\tau (x)=0$, $\tau (x)=x$ and $\tau (x)={x}/{2}$ this covers the well-known Kohn–Nirenberg, anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such type appear naturally in the analysis on nilpotent Lie groups for polynomial functions τ and here we investigate the corresponding calculus in the model case of ${\open R}^n$. We also give examples of nonlinear τ appearing on the polarized and non-polarized Heisenberg groups.
Given a compact Lie group $G$, in this paper we establish $L^{p}$-bounds for pseudo-differential operators in $L^{p}(G)$. The criteria here are given in terms of the concept of matrix symbols defined on the noncommutative analogue of the phase space $G\times \widehat{G}$, where $\widehat{G}$ is the unitary dual of $G$. We obtain two different types of $L^{p}$ bounds: first for finite regularity symbols and second for smooth symbols. The conditions for smooth symbols are formulated using $\mathscr{S}_{\unicode[STIX]{x1D70C},\unicode[STIX]{x1D6FF}}^{m}(G)$ classes which are a suitable extension of the well-known $(\unicode[STIX]{x1D70C},\unicode[STIX]{x1D6FF})$ ones on the Euclidean space. The results herein extend classical $L^{p}$ bounds established by C. Fefferman on $\mathbb{R}^{n}$. While Fefferman’s results have immediate consequences on general manifolds for $\unicode[STIX]{x1D70C}>\max \{\unicode[STIX]{x1D6FF},1-\unicode[STIX]{x1D6FF}\}$, our results do not require the condition $\unicode[STIX]{x1D70C}>1-\unicode[STIX]{x1D6FF}$. Moreover, one of our results also does not require $\unicode[STIX]{x1D70C}>\unicode[STIX]{x1D6FF}$. Examples are given for the case of $\text{SU}(2)\cong \mathbb{S}^{3}$ and vector fields/sub-Laplacian operators when operators in the classes $\mathscr{S}_{0,0}^{m}$ and $\mathscr{S}_{\frac{1}{2},0}^{m}$ naturally appear, and where conditions $\unicode[STIX]{x1D70C}>\unicode[STIX]{x1D6FF}$ and $\unicode[STIX]{x1D70C}>1-\unicode[STIX]{x1D6FF}$ fail, respectively.
In this paper we prove weighted norm inequalities with weights in the ${{A}_{p}}$ classes, for pseudodifferential operators with symbols in the class $S_{\rho ,\delta }^{n(\rho -1)}$ that fall outside the scope of Calderón–Zygmund theory. This is accomplished by controlling the sharp function of the pseudodifferential operator by Hardy–Littlewood type maximal functions. Our weighted norm inequalities also yield ${{L}^{p}}$ boundedness of commutators of functions of bounded mean oscillation with a wide class of operators in $\text{OPS}_{\rho ,\delta }^{m}$.
For a continuous nonvanishing complex-valued function g on the real line, several notions of a mean winding number are introduced. We give necessary conditions for a Toeplitz operator with matrix-valued symbol G to be semi-Fredholm in terms of mean winding numbers of det G. The matrix function G is assumed to be continuous on the real line, and no other apriori assumptions on it are made.
Let $V(\mathbb{R})$ denote the Banach algebra of absolutely continuous functions of bounded total variation on $\mathbb{R}$, and let $\mathcal{B}_p$ be the Banach algebra of bounded linear operators acting on the Lebesgue space $L^p(\mathbb{R})$ for $1 < p < \infty$. We study the Banach algebra $\mathfrak{A}\subset\mathcal{B}_p$ generated by the pseudodifferential operators of zero order with slowly oscillating $V(\mathbb{R})$-valued symbols on $\mathbb{R}$. Boundedness and compactness conditions for pseudodifferential operators with symbols in $L^\infty (\mathbb{R}, V(\mathbb{R}))$ are obtained. A symbol calculus for the non-closed algebra of pseudodifferential operators with slowly oscillating $V(\mathbb{R})$-valued symbols is constructed on the basis of an appropriate approximation of symbols by infinitely differentiable ones and by use of the techniques of oscillatory integrals. As a result, the quotient Banach algebra $\mathfrak{A}^\pi = {\mathfrak A} / \mathcal{K}$, where $\mathcal{K}$ is the ideal of compact operators in $\mathcal{B}_p$, is commutative and involutive. An isomorphism between the quotient Banach algebra $\mathfrak{A}^\pi$ of pseudodifferential operators and the Banach algebra $\widehat{\mathfrak{A}}$ of their Fredholm symbols is established. A Fredholm criterion and an index formula for the pseudodifferential operators $A \in \mathfrak{A}$ are obtained in terms of their Fredholm symbols.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.