Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T21:27:31.660Z Has data issue: false hasContentIssue false

EQUIVALENCE OF ELLIPTICITY AND THE FREDHOLM PROPERTY IN THE WEYL-HÖRMANDER CALCULUS

Published online by Cambridge University Press:  20 January 2021

Stevan Pilipović
Affiliation:
Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000Novi Sad, Serbia (stevan.pilipovic@dmi.uns.ac.rs)
Bojan Prangoski
Affiliation:
Department of Mathematics, Faculty of Mechanical Engineering-Skopje, University “Ss. Cyril and Methodius”, Karposh 2 b.b., 1000Skopje, Macedonia (bprangoski@yahoo.com)

Abstract

The main result is that the ellipticity and the Fredholm property of a $\Psi $ DO acting on Sobolev spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically temperate and its associated Planck function vanishes at infinity. The proof is essentially related to the following result that we prove for geodesically temperate Hörmander metrics: If $\lambda \mapsto a_{\lambda }\in S(1,g)$ is a $\mathcal {C}^N$ , $0\leq N\leq \infty $ , map such that each $a_{\lambda }^w$ is invertible on $L^2$ , then the mapping $\lambda \mapsto b_{\lambda }\in S(1,g)$ , where $b_{\lambda }^w$ is the inverse of $a_{\lambda }^w$ , is again of class $\mathcal {C}^N$ . Additionally, assuming also the strong uncertainty principle for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very end, we give an example to illustrate our main result.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atiyah, M. F. and Singer, I. M., The index of elliptic operators: III, Ann. Math. 87(3) (1968), 546604.CrossRefGoogle Scholar
Beals, R. and Fefferman, C., Spatially inhomogeneous pseudodifferential operators. I, Commun. Pure Appl. Math. 27 (1974), 124.CrossRefGoogle Scholar
Beals, R., Spatially inhomogeneous pseudodifferential operators. II, Commun. Pure Appl. Math. 27 (1974), 161205.CrossRefGoogle Scholar
Beals, R., A general calculus of pseudodifferential operators, Duke Math. J. 42 (1975), 142.CrossRefGoogle Scholar
Beals, R., Characterization of pseudodifferential operators and applications, Duke Math. J. 44(1) (1977), 4557.CrossRefGoogle Scholar
Bilyj, O., Schrohe, E. and Seiler, J., ${H}_{\infty }$ -calculus for hypoelliptic pseudodifferential operators, Proc. Amer. Math. Soc. 138(5) (2010), 16451656.CrossRefGoogle Scholar
Boggiatto, P. and Schrohe, E., Characterization, spectral invariance and the Fredholm property of multi-quasi-elliptic operators, Rend. Sem. Mat. Univ. Politec. Torino 59(4) (2001), 229242.Google Scholar
Bony, J. M., On the characterization of pseudodifferential operators (old and new), in Studies in Phase Space Analysis with Applications to PDEs, pp. 2134 (Birkhäuser, New York, 2013).CrossRefGoogle Scholar
Bony, J. M. and Chemin, J. Y., Espaces fonctionnels associés au calcul de Weyl-Hörmander [Function spaces associated with the Weyl-Hörmander calculus], Bull. Soc. Math. France 122(1) (1994), 77118.CrossRefGoogle Scholar
Bony, J. M. and Lerner, N., Quantification asymptotique et microlocalisations d’ordre supérieur. I. [Asymptotic quantization and higher-order microlocalizations. I.], Ann. Sci. École Norm. Sup. (4) 22(3) (1989), 377433.CrossRefGoogle Scholar
Buzano, E. and Nicola, F., Complex powers of hypoelliptic pseudodifferential operators, J. Funct. Anal. 245 (2007), 353378.CrossRefGoogle Scholar
Buzano, E. and Toft, J., Schatten-von Neumann properties in the Weyl calculus, J. Funct. Anal. 259 (2010), 30803114.CrossRefGoogle Scholar
Cancelier, C., Chemin, J.-Y. and Xu, C.-J., Calcul de Weyl et opérateurs sous-elliptiques [Weyl calculus and subelliptic operators], Exp. No. XXII, 16 pp. (École Polytechnique, Palaiseau, France, 1992).Google Scholar
Coifman, R. R. and Meyer, Y., Au delá des opérateurs pseudo-différentiels [Beyond pseudodifferential operators], Astérisque 57 (1978), pp. 185.Google Scholar
Cordes, H. O., On a class of C*-algebras, Math. Ann. 170(4) (1967), 283313.CrossRefGoogle Scholar
Cordes, H. O., On pseudodifferential operators and smoothness of special Lie-group representations, Manuscripta Math. 28(1-3) (1979), 5169.CrossRefGoogle Scholar
Fedosov, B. V., Direct proof of the formula for the index of an elliptic system in Euclidean space, Funct. Anal. Appl. 4(4) (1970), 339341.CrossRefGoogle Scholar
Fedosov, B. V., Index of an elliptic system on a manifold, Funct. Anal. Appl. 4(4) (1970), 312320.CrossRefGoogle Scholar
Fedosov, B. V., Analytic formulae for the index of elliptic operators, Trudy Moskovskogo Matematicheskogo Obshchestva 30 (1974), 159241.Google Scholar
Gramsch, B., Relative Inversion in der Störungstheorie von Operatoren und $\varPsi$ -Algebren [Relative inversions in perturbation theory of operators and $\varPsi$ -algebras], Math. Ann. 269(1) (1984), 2771.CrossRefGoogle Scholar
Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques [Spectral theory for globally elliptical operators], Astérisque 112 (1984), pp. 197.Google Scholar
Hörmander, L., The Weyl calculus of pseudo-differential operators, Commun. Pure Appl. Math. 32(3) (1979), 359443.CrossRefGoogle Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators. III. Pseudo-differential Operators, Classics in Mathematics (Springer, Berlin, 2007).CrossRefGoogle Scholar
Lee, J. M., Introduction to Smooth Manifolds (Springer, New York, 2013).Google Scholar
Leopold, H.-G. and Schrohe, E., Spectral invariance for algebras of pseudodifferential operators on Besov spaces of variable order of differentiation, Math. Nachr. 156 (1992), 723.CrossRefGoogle Scholar
Leopold, H.-G. and Schrohe, E., Spectral invariance for algebras of pseudodifferential operators on Besov-Triebel-Lizorkin spaces, Manuscripta Math. 78(1) (1993), 99110.CrossRefGoogle Scholar
Lerner, N., Metrics on the Phase Space and Non-selfadjoint Pseudo-differential Operators, Vol. 3 (Springer Science & Business Media, Basel, Boston, Berlin, 2010).CrossRefGoogle Scholar
Nicola, F. and Rodino, L., Dixmier traceability for general pseudo-differential operators, in C*-algebras and Elliptic Theory II, pp. 227237 (Birkhäuser, Basel, Switzerland, 2008).CrossRefGoogle Scholar
Nicola, F. and Rodino, L., Global Pseudo-differential Calculus on Euclidean Spaces, Vol. 4 (Birkhäuser, Basel, Switzerland, 2010).CrossRefGoogle Scholar
Schrohe, E., Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces, Ann. Global Anal. Geom. 10(3) (1992), 237254.CrossRefGoogle Scholar
Shubin, M. A., Pseudodifferential Operators and Spectral Theory (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
Taylor, A. E. and Lay, D. C., Introduction to Functional Analysis (John Wiley & Sons, New York, 1986).Google Scholar
Toft, J., Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces, Ann. Global Anal. Geom. 30(2) (2006), 169209.CrossRefGoogle Scholar
Ueberberg, J., Zur Spektralinvarianz von Algebren von Pseudo-differentialoperatoren in der Lp-Theorie [On the spectral invariance of algebras of pseudodifferential operators in the Lp-theory], Manuscripta Math. 61 (1988), 459475.CrossRefGoogle Scholar
Waelbroeck, L., Topological Vector Spaces and Algebras, Vol. 230 (Springer-Verlag, Berlin, 1971).Google Scholar