We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider the discrete Orlicz chord Minkowski problem and solve the existence of this problem, which is the nontrivial extension of the discrete $L_{p}$ chord Minkowski problem for ${0<p<1}$.
Describing the equality conditions of the Alexandrov–Fenchel inequality [Ale37] has been a major open problem for decades. We prove that in the case of convex polytopes, this description is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. This is the first hardness result for the problem and is a complexity counterpart of the recent result by Shenfeld and van Handel [SvH23], which gave a geometric characterization of the equality conditions. The proof involves Stanley’s [Sta81] order polytopes and employs poset theoretic technology.
In this paper, we give necessary and sufficient conditions for the rigidity of the perimeter inequality under Schwarz symmetrization. The term rigidity refers to the situation in which the equality cases are only obtained by translations of the symmetric set. In particular, we prove that the sufficient conditions for rigidity provided in M. Barchiesi, F. Cagnetti and N. Fusco [Stability of the Steiner symmetrization of convex sets. J. Eur. Math. Soc. 15 (2013), 1245-1278.] are also necessary.
We investigate the convexity of the radial sum of two convex bodies containing the origin. Generally, the radial sum of two convex bodies containing the origin is not convex. We show that the radial sum of a star body (with respect to the origin) and any large centered ball is convex, which produces a pair of convex bodies containing the origin whose radial sum is convex.
We also investigate the convexity of the intersection body of a convex body containing the origin. Generally, the intersection body of a convex body containing the origin is not convex. Busemann’s theorem states that the intersection body of any centered convex body is convex. We are interested in how to construct convex intersection bodies from convex bodies without any symmetry (especially, central symmetry). We show that the intersection body of the radial sum of a star body (with respect to the origin) and any large centered ball is convex, which produces a convex body with no symmetries whose intersection body is convex.
In 1993, E. Lutwak established a minimax inequality for inscribed cones of origin symmetric convex bodies. In this work, we re-prove Lutwak’s result using a maxmin inequality for circumscribed cylinders. Furthermore, we explore connections between the maximum volume of inscribed double cones of a centered convex body and the minimum volume of circumscribed cylinders of its polar body.
Bezdek and Kiss showed that existence of origin-symmetric coverings of unit sphere in
${\mathbb {E}}^n$
by at most
$2^n$
congruent spherical caps with radius not exceeding
$\arccos \sqrt {\frac {n-1}{2n}}$
implies the X-ray conjecture and the illumination conjecture for convex bodies of constant width in
${\mathbb {E}}^n$
, and constructed such coverings for
$4\le n\le 6$
. Here, we give such constructions with fewer than
$2^n$
caps for
$5\le n\le 15$
.
For the illumination number of any convex body of constant width in
${\mathbb {E}}^n$
, Schramm proved an upper estimate with exponential growth of order
$(3/2)^{n/2}$
. In particular, that estimate is less than
$3\cdot 2^{n-2}$
for
$n\ge 16$
, confirming the abovementioned conjectures for the class of convex bodies of constant width. Thus, our result settles the outstanding cases
$7\le n\le 15$
.
We also show how to calculate the covering radius of a given discrete point set on the sphere efficiently on a computer.
It was observed recently in work of Bez, Buschenhenke, Cowling, Flock and the first author, that the euclidean Brascamp–Lieb inequality satisfies a natural and useful Fourier duality property. The purpose of this paper is to establish an appropriate discrete analogue of this. Our main result identifies the Brascamp–Lieb constants on (finitely-generated) discrete abelian groups with Brascamp–Lieb constants on their (Pontryagin) duals. As will become apparent, the natural setting for this duality principle is that of locally compact abelian groups, and this raises basic questions about Brascamp–Lieb constants formulated in this generality.
where
$\omega _{\mathcal {E}}^r(f, t)_p$
denotes the rth order directional modulus of smoothness of
$f\in L^p(\Omega )$
along a finite set of directions
$\mathcal {E}\subset \mathbb {S}^{d-1}$
such that
$\mathrm {span}(\mathcal {E})={\mathbb R}^d$
,
$\Pi _{r-1}^d(\mathcal {E}):=\{g\in C(\Omega ):\ \omega ^r_{\mathcal {E}} (g, \mathrm {diam} (\Omega ))_p=0\}$
. We prove that there does not exist a universal finite set of directions
$\mathcal {E}$
for which this inequality holds on every convex body
$\Omega \subset {\mathbb R}^d$
, but for every connected
$C^2$
-domain
$\Omega \subset {\mathbb R}^d$
, one can choose
$\mathcal {E}$
to be an arbitrary set of d independent directions. We also study the smallest number
$\mathcal {N}_d(\Omega )\in {\mathbb N}$
for which there exists a set of
$\mathcal {N}_d(\Omega )$
directions
$\mathcal {E}$
such that
$\mathrm {span}(\mathcal {E})={\mathbb R}^d$
and the directional Whitney inequality holds on
$\Omega $
for all
$r\in {\mathbb N}$
and
$p>0$
. It is proved that
$\mathcal {N}_d(\Omega )=d$
for every connected
$C^2$
-domain
$\Omega \subset {\mathbb R}^d$
, for
$d=2$
and every planar convex body
$\Omega \subset {\mathbb R}^2$
, and for
$d\ge 3$
and every almost smooth convex body
$\Omega \subset {\mathbb R}^d$
. For
$d\ge 3$
and a more general convex body
$\Omega \subset {\mathbb R}^d$
, we connect
$\mathcal {N}_d(\Omega )$
with a problem in convex geometry on the X-ray number of
$\Omega $
, proving that if
$\Omega $
is X-rayed by a finite set of directions
$\mathcal {E}\subset \mathbb {S}^{d-1}$
, then
$\mathcal {E}$
admits the directional Whitney inequality on
$\Omega $
for all
$r\in {\mathbb N}$
and
$0<p\leq \infty $
. Such a connection allows us to deduce certain quantitative estimate of
$\mathcal {N}_d(\Omega )$
for
$d\ge 3$
.
A slight modification of the proof of the usual Whitney inequality in literature also yields a directional Whitney inequality on each convex body
$\Omega \subset {\mathbb R}^d$
, but with the set
$\mathcal {E}$
containing more than
$(c d)^{d-1}$
directions. In this paper, we develop a new and simpler method to prove the directional Whitney inequality on more general, possibly nonconvex domains requiring significantly fewer directions in the directional moduli.
A tight frame is the orthogonal projection of some orthonormal basis of
$\mathbb {R}^n$
onto
$\mathbb {R}^k.$
We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular polytopes in terms of tight frames and write a first-order necessary condition for local extrema of these problems. As applications, we prove new results for the problem of maximization of the volume of zonotopes.
A. R. Martínez Fernández obtained upper bounds for quermassintegrals of the p-inner parallel bodies: an extension of the classical inner parallel body to the
$L_p$
-Brunn-Minkowski theory. In this paper, we establish (sharp) upper and lower bounds for quermassintegrals of p-inner parallel bodies. Moreover, the sufficient and necessary conditions of the equality case for the main inequality are obtained, which characterize the so-called tangential bodies.
We study the classical Rosenthal–Szasz inequality for a plane whose geometry is determined by a norm. This inequality states that the bodies of constant width have the largest perimeter among all planar convex bodies of given diameter. In the case where the unit circle of the norm is given by a Radon curve, we obtain an inequality which is completely analogous to the Euclidean case. For arbitrary norms we obtain an upper bound for the perimeter calculated in the anti-norm, yielding an analogous characterisation of all curves of constant width. To derive these results, we use methods from the differential geometry of curves in normed planes.
We prove a reverse Faber–Krahn inequality for the Cheeger constant, stating that every convex body in ℝ2 has an affine image such that the product between its Cheeger constant and the square root of its area is not larger than the same quantity for the regular triangle. An analogous result holds for centrally symmetric convex bodies with the regular triangle replaced by the square. We also prove a Mahler-type inequality for the Cheeger constant, stating that every axisymmetric convex body in ℝ2 has a linear image such that the product between its Cheeger constant and the Cheeger constant of its polar body is not larger than the same quantity for the square.
We review some simple techniques based on monotone-mass transport that allow us to obtain transport-type inequalities for any log-concave probability measures, and for more general measures as well. We discuss quantitative forms of these inequalities, with application to the Brascamp–Lieb variance inequality.
If $f,\,g:\,{{\mathbb{R}}^{n}}\,\to \,{{\mathbb{R}}_{\ge 0}}$ are non-negative measurable functions, then the Prékopa–Leindler inequality asserts that the integral of the Asplund sum (provided that it is measurable) is greater than or equal to the 0-mean of the integrals of $f$ and $g$. In this paper we prove that under the sole assumption that $f$ and $g$ have a common projection onto a hyperplane, the Prékopa–Leindler inequality admits a linear refinement. Moreover, the same inequality can be obtained when assuming that both projections (not necessarily equal as functions) have the same integral. An analogous approach may be also carried out for the so-called Borell-Brascamp-Lieb inequality.
Let K ⊂ ℝN be any convex body containing the origin. A measurable set G ⊂ ℝN with finite and positive Lebesgue measure is said to be K-dense if, for any fixed r > 0, the measure of G ⋂ (x + rK) is constant when x varies on the boundary of G (here, x + rK denotes a translation of a dilation of K). In a previous work, we proved for the case N = 2 that if G is K-dense, then both G and K must be homothetic to the same ellipse. Here, we completely characterize K-dense sets in ℝN: if G is K-dense, then both G and K must be homothetic to the same ellipsoid. Our proof, which builds upon results obtained in our previous work, relies on an asymptotic formula for the measure of G ⋂ (x + rK) for large values of the parameter r and a classical characterization of ellipsoids due to Petty.
One of the most fruitful results from Minkowski’s geometric viewpoint on number theory is his so-called first fundamental theorem. It provides an optimal upper bound for the volume of a $0$-symmetric convex body whose only interior lattice point is the origin. Minkowski also obtained a discrete analog by proving optimal upper bounds on the number of lattice points in the boundary of such convex bodies. Whereas the volume inequality has been generalized to any number of interior lattice points already by van der Corput in the 1930s, a corresponding result for the discrete case remained to be proven. Our main contribution is a corresponding optimal relation between the number of boundary and interior lattice points of a $0$-symmetric convex body. The proof relies on a congruence argument and a difference set estimate from additive combinatorics.
Parts of the Brunn–Minkowski theory can be extended to hedgehogs, which are envelopes of families of affine hyperplanes parametrized by their Gauss map. F. Fillastre introduced Fuchsian convex bodies, which are the closed convex sets of Lorentz–Minkowski space that are globally invariant under the action of a Fuchsian group. In this paper, we undertake a study of plane Lorentzian and Fuchsian hedgehogs. In particular, we prove the Fuchsian analogues of classical geometrical inequalities (analogues that are reversed as compared to classical ones).
The isotropic constant $L_{K}$ is an affine-invariant measure of the spread of a convex body $K$. For a $d$-dimensional convex body $K$, $L_{K}$ can be defined by $L_{K}^{2d}=\det (A(K))/(\text{vol}(K))^{2}$, where $A(K)$ is the covariance matrix of the uniform distribution on $K$. It is an open problem to find a tight asymptotic upper bound of the isotropic constant as a function of the dimension. It has been conjectured that there is a universal constant upper bound. The conjecture is known to be true for several families of bodies, in particular, highly symmetric bodies such as bodies having an unconditional basis. It is also known that maximizers cannot be smooth. In this work we study bodies that are neither smooth nor highly symmetric by showing progress towards reducing to a highly symmetric case among non-smooth bodies. More precisely, we study the set of maximizers among simplicial polytopes and we show that if a simplicial polytope $K$ is a maximizer of the isotropic constant among $d$-dimensional convex bodies, then when $K$ is put in isotropic position it is symmetric around any hyperplane spanned by a $(d-2)$-dimensional face and the origin. By a result of Campi, Colesanti and Gronchi, this implies that a simplicial polytope that maximizes the isotropic constant must be a simplex.
Lutwak (Adv. Math., vol. 118(2), 1996, pp. 244–294) defined the notion of Lp-geominimal surface area based on Lp-mixed volumes. Recently, Wang and Qi (J. Inequal. Appl., vol. 2011, 2011, pp. 1–10) introduced the concept of Lp-dual geominimal surface area based on Lp-dual mixed volumes. In this paper, based on Lp-dual mixed quermassintegrals, we define the concept of Lp-dual mixed geominimal surface area and establish several inequalities for this new notion.
In this paper, we consider variational approaches to handle the multiplicative noise removal and deblurring problem. Based on rather reasonable physical blurring-noisy assumptions, we derive a new variational model for this issue. After the study of the basic properties, we propose to approximate it by a convex relaxation model which is a balance between the previous non-convex model and a convex model. The relaxed model is solved by an alternating minimization approach. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed method.