We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove several results concerning the existence of surfaces of section for the geodesic flows of closed orientable Riemannian surfaces. The surfaces of section $\Sigma $ that we construct are either Birkhoff sections, which means that they intersect every sufficiently long orbit segment of the geodesic flow, or at least they have some hyperbolic components in $\partial \Sigma $ as limit sets of the orbits of the geodesic flow that do not return to $\Sigma $. In order to prove these theorems, we provide a study of configurations of simple closed geodesics of closed orientable Riemannian surfaces, which may have independent interest. Our arguments are based on the curve shortening flow.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
Let $(M,g,J)$ be a closed Kähler manifold with negative sectional curvature and complex dimension $m := \dim _{\mathbb {C}} M \geq 2$. In this article, we study the unitary frame flow, that is, the restriction of the frame flow to the principal $\mathrm {U}(m)$-bundle $F_{\mathbb {C}}M$ of unitary frames. We show that if $m \geq 6$ is even and $m \neq 28$, there exists $\unicode{x3bb} (m) \in (0, 1)$ such that if $(M, g)$ has negative $\unicode{x3bb} (m)$-pinched holomorphic sectional curvature, then the unitary frame flow is ergodic and mixing. The constants $\unicode{x3bb} (m)$ satisfy $\unicode{x3bb} (6) = 0.9330...$, $\lim _{m \to +\infty } \unicode{x3bb} (m) = {11}/{12} = 0.9166...$, and $m \mapsto \unicode{x3bb} (m)$ is decreasing. This extends to the even-dimensional case the results of Brin and Gromov [On the ergodicity of frame flows. Invent. Math.60(1) (1980), 1–7] who proved ergodicity of the unitary frame flow on negatively curved compact Kähler manifolds of odd complex dimension.
This paper is about a type of quantitative density of closed geodesics and orthogeodesics on complete finite-area hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic and the shortest doubly truncated orthogeodesic that are $\varepsilon$-dense on a given compact set on the surface.
Let X be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank-one axis. Assume X is not homothetic to a metric graph with integer edge lengths. Let
$P_t$
be the number of parallel classes of oriented closed geodesics of length at most t; then
$\lim \nolimits _{t \to \infty } P_t / ({e^{ht}}/{ht}) = 1$
, where h is the entropy of the geodesic flow on the space
$GX$
of parametrized unit-speed geodesics in X.
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over
${\mathbb{Q}}$
in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
We characterise the Zoll Riemannian metrics on a given simply connected spin closed manifold as those Riemannian metrics for which two suitable min-max values in a finite dimensional loop space coincide. We also show that on odd dimensional Riemannian spheres, when certain pairs of min-max values in the loop space coincide, every point lies on a closed geodesic.
Our main point of focus is the set of closed geodesics on hyperbolic surfaces. For any fixed integer k, we are interested in the set of all closed geodesics with at least k (but possibly more) self-intersections. Among these, we consider those of minimal length and investigate their self-intersection numbers. We prove that their intersection numbers are upper bounded by a universal linear function in k (which holds for any hyperbolic surface). Moreover, in the presence of cusps, we get bounds which imply that the self-intersection numbers behave asymptotically like k for growing k.
The paper surveys open problems and questions related to geodesics defined by Riemannian, Finsler, semi-Riemannian and magnetic structures on manifolds. It is an extended report on problem sessions held during the International Workshop on Geodesics in August 2010 at the Chern Institute of Mathematics in Tianjin.
Given a smooth compact surface without focal points and of higher genus, it is shown that its geodesic flow is semi-conjugate to a continuous expansive flow with a local product structure such that the semi-conjugation preserves time parametrization. It is concluded that the geodesic flow has a unique measure of maximal entropy.
For a fat sub-Riemannian structure, we introduce three canonical Ricci curvatures in the sense of Agrachev–Zelenko–Li. Under appropriate bounds we prove comparison theorems for conjugate lengths, Bonnet–Myers type results and Laplacian comparison theorems for the intrinsic sub-Laplacian. As an application, we consider the sub-Riemannian structure of 3-Sasakian manifolds, for which we provide explicit curvature formulas. We prove that any complete 3-Sasakian structure of dimension $4d+3$, with $d>1$, has sub-Riemannian diameter bounded by $\unicode[STIX]{x1D70B}$. When $d=1$, a similar statement holds under additional Ricci bounds. These results are sharp for the natural sub-Riemannian structure on $\mathbb{S}^{4d+3}$ of the quaternionic Hopf fibrations:
It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied, and the best upper bounds to date are linear in genus, due to a theorem of Buser and Seppälä. The goal of this note is to give a short proof of a linear upper bound that slightly improves the best known bound.
We construct distinctive surfaces of revolution with finite total curvature whose Gauss curvatures are not bounded. Such a surface of revolution is employed as a reference surface of comparison theorems in radial curvature geometry. Moreover, we prove that a complete noncompact Riemannian manifold M is homeomorphic to the interior of a compact manifold with boundary if the manifold M is not less curved than a noncompact model surface of revolution and if the total curvature of the model surface is finite and less than 2π. By the first result mentioned above, the second result covers a much wider class of manifolds than that of complete noncompact Riemannian manifolds whose sectional curvatures are bounded from below by a constant.
We show that PQε-projectivity of two Riemannian metrics introduced in [15] (P. J. Topalov, Geodesic compatibility and integrability of geodesic flows, J. Math. Phys.44(2) (2003), 913–929.) implies affine equivalence of the metrics unless ε ∈ {0,−1,−3,−5,−7,. . .}. Moreover, we show that for ε=0, PQε-projectivity implies projective equivalence.
We characterize real hypersurfaces of type (A) and ruled real hypersurfaces in a complex projective space in terms of two φ-invariances of their shape operators, and give geometric meanings of these real hypersurfaces by observing their some geodesics.
The problem of finding geodesics that avoid certain obstacles in negatively curved manifolds has been studied in different situations. In this note we give a generalization of the unclouding theorem of J. Parkkonen and F. Paulin: there is a constant s0=1.534 such that for any Hadamard manifold M with curvature ≤−1 and for any family of disjoint balls or horoballs {Ca}a∈A and for any point p∈M−⋃ a∈ACa if we shrink these balls uniformly by s0 one can always find a geodesic ray emanating from p that avoids the shrunk balls. It will be shown that in the theorem above one can replace the balls by arbitrary convex sets.
In this paper telegraph processes on geodesic lines of the Poincaré half-space and Poincaré disk are introduced and the behavior of their hyperbolic distances examined. Explicit distributions of the processes are obtained and the related governing equations derived. By means of the processes on geodesic lines, planar random motions (with independent components) in the Poincaré half-space and disk are defined and their hyperbolic random distances studied. The limiting case of one-dimensional and planar motions together with their hyperbolic distances is discussed with the aim of establishing connections with the well-known stochastic representations of hyperbolic Brownian motion. Extensions of motions with finite velocity to the three-dimensional space are also hinted at, in the final section.