We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce Chern classes in $U(m)$-equivariant homotopical bordism that refine the Conner–Floyd–Chern classes in the $\mathbf {MU}$-cohomology of $B U(m)$. For products of unitary groups, our Chern classes form regular sequences that generate the augmentation ideal of the equivariant bordism rings. Consequently, the Greenlees–May local homology spectral sequence collapses for products of unitary groups. We use the Chern classes to reprove the $\mathbf {MU}$-completion theorem of Greenlees–May and La Vecchia.
Following ideas of Lurie, we give a general construction of equivariant elliptic cohomology without restriction to characteristic zero. Specializing to the universal elliptic curve we obtain, in particular, equivariant spectra of topological modular forms. We compute the fixed points of these spectra for the circle group and more generally for tori.
For a finitely dominated Poincaré duality space $M$, we show how the first author's total obstruction $\mu _M$ to the existence of a Poincaré embedding of the diagonal map $M \to M \times M$ in [17] relates to the Reidemeister trace of the identity map of $M$. We then apply this relationship to show that $\mu _M$ vanishes when suitable conditions on the fundamental group of $M$ are satisfied.
We prove that real topological Hochschild homology $\mathrm {THR}$ for schemes with involution satisfies base change and descent for the ${\mathbb {Z}/2}$-isovariant étale topology. As an application, we provide computations for the projective line (with and without involution) and the higher-dimensional projective spaces.
We show that every orbispace satisfying certain mild hypotheses has ‘enough’ vector bundles. It follows that the $K$-theory of finite rank vector bundles on such orbispaces is a cohomology theory. Global presentation results for smooth orbifolds and derived smooth orbifolds also follow.
For a weight structure w on a triangulated category $\underline {C}$ we prove that the corresponding weight complex functor and some other (weight-exact) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case $w=w^{sph}$ (the spherical weight structure on $SH$), we deduce the following converse to the stable Hurewicz theorem: $H^{sing}_{i}(M)=\{0\}$ for all $i<0$ if and only if $M\in SH$ is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.
The main idea is to study M that has no weights$m,\dots ,n$ (‘in the middle’). For $w=w^{sph}$, this is the case if there exists a distinguished triangle $LM\to M\to RM$, where $RM$ is an n-connected spectrum and $LM$ is an $m-1$-skeleton (of M) in the sense of Margolis’s definition; this happens whenever $H^{sing}_i(M)=\{0\}$ for $m\le i\le n$ and $H^{sing}_{m-1}(M)$ is a free abelian group. We also consider morphisms that kill weights$m,\dots ,n$; those ‘send n-w-skeleta into $m-1$-w-skeleta’.
We show that the bicategory of finite groupoids and right-free permutation bimodules is a quotient of the bicategory of Mackey 2-motives introduced in [2], obtained by modding out the so-called cohomological relations. This categorifies Yoshida’s theorem for ordinary cohomological Mackey functors and provides a direct connection between Mackey 2-motives and the usual blocks of representation theory.
In this paper, we compute the $BP$-cohomology of complex projective Stiefel manifolds. The method involves the homotopy fixed point spectral sequence, and works for complex oriented cohomology theories. We also use these calculations and $BP$-operations to prove new results about equivariant maps between Stiefel manifolds.
We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.
We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each $r\geq ~2$ we associate to an annular link $L$ a naive $\mathbb {Z}/r\mathbb {Z}$-equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of $L$ as modules over $\mathbb {Z}[\mathbb {Z}/r\mathbb {Z}]$. The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology.
We construct a calculus of functors in the spirit of orthogonal calculus, which is designed to study ‘functors with reality’ such as the Real classifying space functor, . The calculus produces a Taylor tower, the n-th layer of which is classified by a spectrum with an action of . We further give model categorical considerations, producing a zigzag of Quillen equivalences between spectra with an action of and a model structure on the category of input functors which captures the homotopy theory of the n-th layer of the Taylor tower.
Greenlees has conjectured that the rational stable equivariant homotopy category of a compact Lie group always has an algebraic model. Based on this idea, we show that the category of rational local systems on a connected finite loop space always has a simple algebraic model. When the loop space arises from a connected compact Lie group, this recovers a special case of a result of Pol and Williamson about rational cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie group G such that the Weyl group WGK is connected, then a certain category of rational G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is just the category of rational cofree G-spectra, and this recovers the aforementioned result. Throughout, we pay careful attention to the role of torsion and complete categories.
We study the indexing systems that correspond to equivariant Steiner and linear isometries operads. When G is a finite abelian group, we prove that a G-indexing system is realized by a Steiner operad if and only if it is generated by cyclic G-orbits. When G is a finite cyclic group, whose order is either a prime power or a product of two distinct primes greater than 3, we prove that a G-indexing system is realized by a linear isometries operad if and only if it satisfies Blumberg and Hill’s horn-filling condition. We also repackage the data in an indexing system as a certain kind of partial order. We call these posets transfer systems, and develop basic tools for computing with them.
Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classical examples of complex projective spaces under complex conjugation. Spaces which are constructed from unit balls in complex Euclidean spaces are called spherical and are very well understood. Our aim is twofold. We construct ‘exotic’ conjugation spaces and study the realization question: which spaces can be realized as real loci, i.e., fixed points of conjugation spaces. We identify obstructions and provide examples of spaces and manifolds which cannot be realized as such.
In this paper, we show that the known models for (∞, 1)-categories can all be extended to equivariant versions for any discrete group G. We show that in two of the models we can also consider actions of any simplicial group G.
Let S(V) be a complex linear sphere of a finite group G. Let S(V)*n denote the n-fold join of S(V) with itself and let aut G(S(V)*) denote the space of G-equivariant self-homotopy equivalences of S(V)*n. We show that for any k ≥ 1 there exists M > 0 that depends only on V such that |πk autG(S(V)*n)|≤ M for all n ≫0.
We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial $G$-sets to symmetric $G$-spectra, where $G$ is a finite group. We extend a notion of $G$-linearity suggested by Blumberg to define stably excisive and ${\it\rho}$-analytic homotopy functors, as well as a $G$-differential, in this equivariant context. A main result of the paper is that analytic functors with trivial derivatives send highly connected $G$-maps to $G$-equivalences. It is analogous to the classical result of Goodwillie that ‘functors with zero derivative are locally constant’. As the main example, we show that Hesselholt and Madsen’s Real algebraic $K$-theory of a split square zero extension of Wall antistructures defines an analytic functor in the $\mathbb{Z}/2$-equivariant setting. We further show that the equivariant derivative of this Real $K$-theory functor is $\mathbb{Z}/2$-equivalent to Real MacLane homology.
We present a new proof of Anderson's result that the real K-theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K-theory spectrum KU is C2-equivariantly equivalent to Σ4KU, where C2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K(1)-local Picard group.
For a compact simply connected simple Lie group G with an involution α, we compute the G ⋊ ℤ/2-equivariant K-theory of G where G acts by conjugation and ℤ/2 acts either by α or by g ↦ α(g)−1. We also give a representation-theoretic interpretation of those groups, as well as of KG(G).
We discuss a geometric model for equivariant algebraic K-theory of quasiprojective varieties. This is inspired by and extends earlier work of Grayson-Walker on algebraic K-theory and related theories. Our main result is used by Hornbostel-Heller in their work on equivariant semi-topological K-homology and a theorem of Thomason.