We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a formulation of a deformation of Dirac operator along orbits of a group action on a possibly noncompact manifold to get an equivariant index and a K-homology cycle representing the index. We apply this framework to noncompact Hamiltonian torus manifolds to define geometric quantization from the viewpoint of index theory. We give two applications. The first one is a proof of a [Q,R]=0 type theorem, which can be regarded as a proof of the Vergne conjecture for abelian case. The other is a Danilov-type formula for toric case in the noncompact setting, which is a localization phenomenon of geometric quantization in the noncompact setting. The proofs are based on the localization of index to lattice points.
We construct a Baum–Connes assembly map localised at the unit element of a discrete group $\Gamma$. This morphism, called $\mu _\tau$, is defined in $KK$-theory with coefficients in $\mathbb {R}$ by means of the action of the idempotent $[\tau ]\in KK_{\mathbin {{\mathbb {R}}}}^\Gamma (\mathbb {C},\mathbb {C})$ canonically associated to the group trace of $\Gamma$. We show that the corresponding $\tau$-Baum–Connes conjecture is weaker than the classical version, but still implies the strong Novikov conjecture. The right-hand side of $\mu _\tau$ is functorial with respect to the group $\Gamma$.
In [HL99], the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then shown that the associated heat operator converges to the Chern character of the index bundle of the operator. In [BH08], this result was improved by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.
Let X be a locally compact metrizable space. We show that the Paschke dual construction, which associates to a representation of C0(X) its commutant modulo locally compact operators, can be sheafified. We use this observation to simplify several constructions in analytic K-homology.
We introduce a new topology, weaker than the gap topology, on the space of self-adjoint operators affiliated to a semifinite von Neumann algebra. We define the real-valued spectral flow for a continuous path of self-adjoint Breuer–Fredholm operators in terms of a generalization of the winding number. We compare our definition with Phillips's analytical definition and derive integral formulae for the spectral flow for certain paths of unbounded operators with common domain, generalizing those of Carey and Phillips. Furthermore, we prove the homotopy invariance of the real-valued index. As an example we consider invariant symmetric elliptic differential operators on Galois coverings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.