We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we study early warning signs for stochastic partial differential equations (SPDEs), where the linearisation around a steady state is characterised by continuous spectrum. The studied warning sign takes the form of qualitative changes in the variance as a deterministic bifurcation threshold is approached via parameter variation. Specifically, we focus on the scaling law of the variance near the transition. Since we are dealing here, in contrast to previous studies, with the case of continuous spectrum and quantitative scaling laws, it is natural to start with linearisations of the drift operator that are multiplication operators defined by analytic functions. For a one-dimensional spatial domain, we obtain precise rates of divergence. In the case of the two- and three-dimensional domains, an upper bound to the rate of the early warning sign is proven. These results are cross-validated by numerical simulations. Our theory can be generically useful for several applications, where stochastic and spatial aspects are important in combination with continuous spectrum bifurcations.
Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al. (SIAM Multiscale Modeling Simul.17, 2019).
In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.
We propose a discrete-time discrete-space Markov chain approximation with a Brownian bridge correction for computing curvilinear boundary crossing probabilities of a general diffusion process on a finite time interval. For broad classes of curvilinear boundaries and diffusion processes, we prove the convergence of the constructed approximations in the form of products of the respective substochastic matrices to the boundary crossing probabilities for the process as the time grid used to construct the Markov chains is getting finer. Numerical results indicate that the convergence rate for the proposed approximation with the Brownian bridge correction is $O(n^{-2})$ in the case of $C^2$ boundaries and a uniform time grid with n steps.
We prove existence and uniqueness for the solution of a class of mixed fractional stochastic differential equations with discontinuous drift driven by both standard and fractional Brownian motion. Additionally, we establish a generalized Itô rule valid for functions with an absolutely continuous derivative and applicable to solutions of mixed fractional stochastic differential equations with Lipschitz coefficients, which plays a key role in our proof of existence and uniqueness. The proof of such a formula is new and relies on showing the existence of a density of the law under mild assumptions on the diffusion coefficient.
We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.
The systematic development of coarse-grained (CG) models via the Mori–Zwanzig projector operator formalism requires the explicit description of a deterministic drift term, a dissipative memory term and a random fluctuation term. The memory and fluctuating terms are related by the fluctuation–dissipation relation and are more challenging to sample and describe than the drift term due to complex dependence on space and time. This work proposes a rational basis for a Markovian data-driven approach to approximating the memory and fluctuating terms. We assumed a functional form for the memory kernel and under broad regularity hypothesis, we derived bounds for the error committed in replacing the original term with an approximation obtained by its asymptotic expansions. These error bounds depend on the characteristic time scale of the atomistic model, representing the decay of the autocorrelation function of the fluctuating force; and the characteristic time scale of the CG model, representing the decay of the autocorrelation function of the momenta of the beads. Using appropriate parameters to describe these time scales, we provide a quantitative meaning to the observation that the Markovian approximation improves as they separate. We then proceed to show how the leading-order term of such expansion can be identified with the Markovian approximation usually considered in the CG theory. We also show that, while the error of the approximation involving time can be controlled, the Markovian term usually considered in CG simulations may exhibit significant spatial variation. It follows that assuming a spatially constant memory term is an uncontrolled approximation which should be carefully checked. We complement our analysis with an application to the estimation of the memory in the CG model of a one-dimensional Lennard–Jones chain with different masses and interactions, showing that even for such a simple case, a non-negligible spatial dependence for the memory term exists.
In this paper an exact rejection algorithm for simulating paths of the coupled Wright–Fisher diffusion is introduced. The coupled Wright–Fisher diffusion is a family of multivariate Wright–Fisher diffusions that have drifts depending on each other through a coupling term and that find applications in the study of networks of interacting genes. The proposed rejection algorithm uses independent neutral Wright–Fisher diffusions as candidate proposals, which are only needed at a finite number of points. Once a candidate is accepted, the remainder of the path can be recovered by sampling from neutral multivariate Wright–Fisher bridges, for which an exact sampling strategy is also provided. Finally, the algorithm’s complexity is derived and its performance demonstrated in a simulation study.
Oscillatory systems of interacting Hawkes processes with Erlang memory kernels were introduced by Ditlevsen and Löcherbach (Stoch. Process. Appl., 2017). They are piecewise deterministic Markov processes (PDMP) and can be approximated by a stochastic diffusion. In this paper, first, a strong error bound between the PDMP and the diffusion is proved. Second, moment bounds for the resulting diffusion are derived. Third, approximation schemes for the diffusion, based on the numerical splitting approach, are proposed. These schemes are proved to converge with mean-square order 1 and to preserve the properties of the diffusion, in particular the hypoellipticity, the ergodicity, and the moment bounds. Finally, the PDMP and the diffusion are compared through numerical experiments, where the PDMP is simulated with an adapted thinning procedure.
Suppose X is a multidimensional diffusion process. Assume that at time zero the state of X is fully observed, but at time
$T>0$
only linear combinations of its components are observed. That is, one only observes the vector
$L X_T$
for a given matrix L. In this paper we show how samples from the conditioned process can be generated. The main contribution of this paper is to prove that guided proposals, introduced in [35], can be used in a unified way for both uniformly elliptic and hypo-elliptic diffusions, even when L is not the identity matrix. This is illustrated by excellent performance in two challenging cases: a partially observed twice-integrated diffusion with multiple wells and the partially observed FitzHugh–Nagumo model.
In this paper we propose a new theory and methodology to tackle the problem of unifying Monte Carlo samples from distributed densities into a single Monte Carlo draw from the target density. This surprisingly challenging problem arises in many settings (for instance, expert elicitation, multiview learning, distributed ‘big data’ problems, etc.), but to date the framework and methodology proposed in this paper (Monte Carlo fusion) is the first general approach which avoids any form of approximation error in obtaining the unified inference. In this paper we focus on the key theoretical underpinnings of this new methodology, and simple (direct) Monte Carlo interpretations of the theory. There is considerable scope to tailor the theory introduced in this paper to particular application settings (such as the big data setting), construct efficient parallelised schemes, understand the approximation and computational efficiencies of other such unification paradigms, and explore new theoretical and methodological directions.
We propose an approximation scheme for the computation of the risk measures of guaranteed minimum maturity benefits (GMMBs) and guaranteed minimum death benefits (GMDBs), based on the evaluation of single integrals under conditional moment matching. This procedure is computationally efficient in comparison with standard analytical methods while retaining a high degree of accuracy, and it allows one to deal with the case of additional earnings and the computation of related sensitivities.
This paper is devoted to numerical methods for mean-field stochastic differential equations (MSDEs). We first develop the mean-field Itô formula and mean-field Itô-Taylor expansion. Then based on the new formula and expansion, we propose the Itô-Taylor schemes of strong order γ and weak order η for MSDEs, and theoretically obtain the convergence rate γ of the strong Itô-Taylor scheme, which can be seen as an extension of the well-known fundamental strong convergence theorem to the mean-field SDE setting. Finally some numerical examples are given to verify our theoretical results.
In error estimates of various numerical approaches for solving decoupled forward backward stochastic differential equations (FBSDEs), the rate of convergence for one variable is usually less than for the other. Under slightly strengthened smoothness assumptions, we show that the fully discrete Euler scheme admits a first-order rate of convergence for both variables.
The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for non-linear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully non-linear case and open research questions.
Motivated by the numerical study of spin-boson dynamics in quantum open systems, we present a convergence analysis of the closure approximation for a class of stochastic differential equations. We show that the naive Monte Carlo simulation of the system by direct temporal discretization is not feasible through variance analysis and numerical experiments. We also show that the Wiener chaos expansion exhibits very slow convergence and high computational cost. Though efficient and accurate, the rationale of the moment closure approach remains mysterious. We rigorously prove that the low moments in the moment closure approximation of the considered model are of exponential convergence to the exact result. It is further extended to more general nonlinear problems and applied to the original spin-boson model with similar structure.
We propose a class of numerical methods for solving nonlinear random differential equations with piecewise constant argument, called gPCRK methods as they combine generalised polynomial chaos with Runge-Kutta methods. An error analysis is presented involving the error arising from a finite-dimensional noise assumption, the projection error, the aliasing error and the discretisation error. A numerical example is given to illustrate the effectiveness of this approach.
We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems (SHS). Three types of systems, SHS with multiplicative noise, special separable Hamiltonians and multiple additive noise, respectively, are considered in this paper. Stochastic Runge-Kutta (SRK) methods for these systems are investigated, and the corresponding conditions for SRK methods to preserve the symplectic property are given. Based on the weak/strong order and symplectic conditions, some effective schemes are derived. In particular, using the algebraic computation, we obtained two classes of high weak order symplectic Runge-Kutta methods for SHS with a single multiplicative noise, and two classes of high strong order symplectic Runge-Kutta methods for SHS with multiple multiplicative and additive noise, respectively. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.
The Doss-Sussmann (DS) approach is used for uniform simulation of the Cox-Ingersoll-Ross (CIR) process. The DS formalism allows us to express trajectories of the CIR process through solutions of some ordinary differential equation (ODE) depending on realizations of a Wiener process involved. By simulating the first-passage times of the increments of the Wiener process to the boundary of an interval and solving the ODE, we uniformly approximate the trajectories of the CIR process. In this respect special attention is payed to simulation of trajectories near 0. From a conceptual point of view the proposed method gives a better quality of approximation (from a pathwise point of view) than standard, even exact, simulation of the stochastic differential equation at some deterministic time grid.
We consider the stochastic Allen-Cahn equation perturbed by smooth additive Gaussian noise in a spatial domain with smooth boundary in dimension d ≤ 3, and study the semidiscretization in time of the equation by an implicit Euler method. We show that the method converges pathwise with a rate O(Δtγ) for any γ < ½. We also prove that the scheme converges uniformly in the strong Lp-sense but with no rate given.
In this paper we propose the asymptotic error distributions of the Euler scheme for a stochastic differential equation driven by Itô semimartingales. Jacod (2004) studied this problem for stochastic differential equations driven by pure jump Lévy processes and obtained quite sharp results. We extend his results to a more general pure jump Itô semimartingale.