We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A semiclassical analysis based on spin-coherent states is used to establish a classification and novel simple formulae for the spectral gap of mean-field spin Hamiltonians. For gapped systems, we provide a full description of the low-energy spectra based on a second-order approximation to the semiclassical Hamiltonian, hence justifying fluctuation theory at zero temperature for this case. We also point out a shift caused by the spherical geometry in these second-order approximations.
In this article, we study the observability (or equivalently, the controllability) of some subelliptic evolution equations depending on their step. This sheds light on the speed of propagation of these equations, notably in the ‘degenerated directions’ of the subelliptic structure.
First, for any
$\gamma \geq 1$
, we establish a resolvent estimate for the Baouendi–Grushin-type operator
$\Delta _{\gamma }=\partial _x^2+\left \lvert x\right \rvert ^{2\gamma }\partial _y^2$
, which has step
$\gamma +1$
. We then derive consequences for the observability of the Schrödinger-type equation
$i\partial _tu-\left (-\Delta _{\gamma }\right )^{s}u=0$
, where
$s\in \mathbb N$
. We identify three different cases: depending on the value of the ratio
$(\gamma +1)/s$
, observability may hold in arbitrarily small time or only for sufficiently large times or may even fail for any time.
As a corollary of our resolvent estimate, we also obtain observability for heat-type equations
$\partial _tu+\left (-\Delta _{\gamma }\right )^su=0$
and establish a decay rate for the damped wave equation associated with
$\Delta _{\gamma }$
.
A Lagrangian surface hopping algorithm is implemented to study the two dimensional massless Dirac equation for Graphene with an electrostatic potential, in the semiclassical regime. In this problem, the crossing of the energy levels of the system at Dirac points requires a particular treatment in the algorithm in order to describe the quantum transition—characterized by the Landau-Zener probability— between different energy levels. We first derive the Landau-Zener probability for the underlying problem, then incorporate it into the surface hopping algorithm. We also show that different asymptotic models for this problem derived in [O. Morandi, F. Schurrer, J. Phys. A:Math. Theor. 44 (2011) 265301]may give different transition probabilities. We conduct numerical experiments to compare the solutions to the Dirac equation, the surface hopping algorithm, and the asymptotic models of [O. Morandi, F. Schurrer, J. Phys. A: Math. Theor. 44 (2011) 265301].
A novel Eulerian Gaussian beam method was developed in [8] to compute the Schrödinger equation efficiently in the semiclassical regime. In this paper, we introduce an efficient semi-Eulerian implementation of this method. The new algorithm inherits the essence of the Eulerian Gaussian beam method where the Hessian is computed through the derivatives of the complexified level set functions instead of solving the dynamic ray tracing equation. The difference lies in that, we solve the ray tracing equations to determine the centers of the beams and then compute quantities of interests only around these centers. This yields effectively a local level set implementation, and the beam summation can be carried out on the initial physical space instead of the phase plane. As a consequence, it reduces the computational cost and also avoids the delicate issue of beam summation around the caustics in the Eulerian Gaussian beam method. Moreover, the semi-Eulerian Gaussian beam method can be easily generalized to higher order Gaussian beam methods, which is the topic of the second part of this paper. Several numerical examples are provided to verify the accuracy and efficiency of both the first order and higher order semi-Eulerian methods.
Here we define and prove some properties of the semi-classical wavefront set. We also define and study semi-classical Fourier integral operators and prove a generalization of Egorov’s theorem to manifolds of different dimensions.
Consider $M$, a bounded domain in ${{\mathbb{R}}^{d}}$, which is a Riemanian manifold with piecewise smooth boundary and suppose that the billiard associated to the geodesic flow reflecting on the boundary according to the laws of geometric optics is ergodic. We prove that the boundary value of the eigen-functions of the Laplace operator with reasonable boundary conditions are asymptotically equidistributed in the boundary, extending previous results by Gérard and Leichtnam as well as Hassell and Zelditch, obtained under the additional assumption of the convexity of $M$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.