We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A spread-out lattice animal is a finite connected set of edges in $\{\{x,y\}\subset \mathbb{Z}^d\;:\;0\lt \|x-y\|\le L\}$. A lattice tree is a lattice animal with no loops. The best estimate on the critical point $p_{\textrm{c}}$ so far was achieved by Penrose (J. Stat. Phys. 77, 3–15, 1994) : $p_{\textrm{c}}=1/e+O(L^{-2d/7}\log L)$ for both models for all $d\ge 1$. In this paper, we show that $p_{\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$ for all $d\gt 8$, where the model-dependent constant $C$ has the random-walk representation
where $U^{*n}$ is the $n$-fold convolution of the uniform distribution on the $d$-dimensional ball $\{x\in{\mathbb R}^d\;: \|x\|\le 1\}$. The proof is based on a novel use of the lace expansion for the 2-point function and detailed analysis of the 1-point function at a certain value of $p$ that is designed to make the analysis extremely simple.
We establish an upper bound for the ground state energy per unit volume of a dilute Bose gas in the thermodynamic limit, capturing the correct second-order term, as predicted by the Lee–Huang–Yang formula. This result was first established in [20] by H.-T. Yau and J. Yin. Our proof, which applies to repulsive and compactly supported
$V \in L^3 (\mathbb {R}^3)$
, gives better rates and, in our opinion, is substantially simpler.
The effect of disorder for pinning models is a subject which has attracted much attention in theoretical physics and rigorous mathematical physics. A peculiar point of interest is the question of coincidence of the quenched and annealed critical point for a small amount of disorder. The question has been mathematically settled in most cases in the last few years, giving in particular a rigorous validation of the Harris criterion on disorder relevance. However, the marginal case, where the return probability exponent is equal to $1/2$, that is, where the interarrival law of the renewal process is given by $\text{K}(n)=n^{-3/2}\unicode[STIX]{x1D719}(n)$ where $\unicode[STIX]{x1D719}$ is a slowly varying function, has been left partially open. In this paper, we give a complete answer to the question by proving a simple necessary and sufficient criterion on the return probability for disorder relevance, which confirms earlier predictions from the literature. Moreover, we also provide sharp asymptotics on the critical point shift: in the case of the pinning of a one-dimensional simple random walk, the shift of the critical point satisfies the following high temperature asymptotics
The singularity of specific heat CV of the three-dimensional Ising model is studied based on Monte Carlo data for lattice sizes L≤1536. Fits of two data sets, one corresponding to certain value of the Binder cumulant and the other — to the maximum of CV, provide consistent values of C0 in the ansatz CV(L)=C0+ALα/ν at large L, if α/ν=0.196(6). However, a direct estimation from our data suggests that α/ν, most probably, has a smaller value (e.g., α/ν= 0.113(30)). Thus, the conventional power-law scaling ansatz can be questioned because of this inconsistency. We have found that the data are well described by certain logarithmic ansatz.
What is the effect of punching holes at random in an infinite tensed membrane? When will the membrane still support tension? This problem was introduced by Connelly in connection with applications of rigidity theory to natural sciences. The answer clearly depends on the shapes and the distribution of the holes. We briefly outline a mathematical theory of tension based on graph rigidity theory and introduce a probabilistic model for this problem. We show that if the centers of the holes are distributed in ℝ2 according to a Poisson law with density λ > 0, and the shapes are i.i.d. and independent of the locations of their centers, the tension is lost on all of ℝ2 for any λ. After introducing a certain step-by-step dynamic for the loss of tension, we establish the existence of a nonrandom N = N(λ) such that N steps are almost surely enough for the loss of tension. Also, we prove that N(λ) > 2 almost surely for sufficiently small λ. The processes described in the paper are related to bootstrap and rigidity percolation.
A class of non-linear stochastic models is introduced. Phase transitions, critical points and the domain of attraction are discussed in detail for some concrete examples. For one of the examples the explicit expression for the domain of attraction and the rates of convergence are obtained.
For an independent percolation model on , where is a homogeneous tree and is a one-dimensional lattice, it is shown, by verifying that the triangle condition is satisfied, that the percolation probability θ (p) is a continuous function of p at the critical point pc, and the critical exponents , γ, δ, and Δ exist and take their mean-field values. Some analogous results for Markov fields on are also obtained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.