We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a robust optimal investment–reinsurance problem to minimize the goal-reaching probability that the value of the wealth process reaches a low barrier before a high goal for an ambiguity-averse insurer. The insurer invests its surplus in a constrained financial market, where the proportion of borrowed amount to the current wealth level is no more than a given constant, and short-selling is prohibited. We assume that the insurer purchases per-claim reinsurance to transfer its risk exposure to a reinsurer whose premium is computed according to the mean–variance premium principle. Using the stochastic control approach based on the Hamilton–Jacobi–Bellman equation, we derive robust optimal investment–reinsurance strategies and the corresponding value functions. We conclude that the behavior of borrowing typically occurs with a lower wealth level. Finally, numerical examples are given to illustrate our results.
We show that an estimate by de la Peña, Ibragimov, and Jordan for ${\mathbb{E}}(X-c)^+$, with c a constant and X a random variable of which the mean, the variance, and $\mathbb{P}(X \leqslant c)$ are known, implies an estimate by Scarf on the infimum of ${\mathbb{E}}(X \wedge c)$ over the set of positive random variables X with fixed mean and variance. This also shows, as a consequence, that the former estimate implies an estimate by Lo on European option prices.
In this paper we propose a general framework for modeling an insurance liability cash flow in continuous time, by generalizing the reduced-form framework for credit risk and life insurance. In particular, we assume a nontrivial dependence structure between the reference filtration and the insurance internal filtration. We apply these results for pricing and hedging non-life insurance liabilities in hybrid financial and insurance markets, while taking into account the role of inflation under the benchmarked risk-minimization approach. This framework offers at the same time a general and flexible structure, and an explicit and treatable pricing-hedging formula.
A moment constraint that limits the number of dividends in an optimal dividend problem is suggested. This leads to a new type of time-inconsistent stochastic impulse control problem. First, the optimal solution in the precommitment sense is derived. Second, the problem is formulated as an intrapersonal sequential dynamic game in line with Strotz’s consistent planning. In particular, the notions of pure dividend strategies and a (strong) subgame-perfect Nash equilibrium are adapted. An equilibrium is derived using a smooth fit condition. The equilibrium is shown to be strong. The uncontrolled state process is a fairly general diffusion.
We investigate the impact of Knightian uncertainty on the optimal timing policy of an ambiguity-averse decision-maker in the case where the underlying factor dynamics follow a multidimensional Brownian motion and the exercise payoff depends on either a linear combination of the factors or the radial part of the driving factor dynamics. We present a general characterization of the value of the optimal timing policy and the worst-case measure in terms of a family of explicitly identified excessive functions generating an appropriate class of supermartingales. In line with previous findings based on linear diffusions, we find that ambiguity accelerates timing in comparison with the unambiguous setting. Somewhat surprisingly, we find that ambiguity may lead to stationarity in models which typically do not possess stationary behavior. In this way, our results indicate that ambiguity may act as a stabilizing mechanism.
We introduce a unified framework for solving first passage times of time-homogeneous diffusion processes. Using potential theory and perturbation theory, we are able to deduce closed-form truncated probability densities, as asymptotics or approximations to the original first passage time densities, for single-side level crossing problems. The framework is applicable to diffusion processes with continuous drift functions; in particular, for bounded drift functions, we show that the perturbation series converges. In the present paper, we demonstrate examples of applying our framework to the Ornstein–Uhlenbeck, Bessel, exponential-Shiryaev, and hypergeometric diffusion processes (the latter two being previously studied by Dassios and Li (2018) and Borodin (2009), respectively). The purpose of this paper is to provide a fast and accurate approach to estimating first passage time densities of various diffusion processes.
A credit default swap (CDS) is an exchange of premium payments for a compensation for the occurrence of a credit event. Counterparty risks refer to defaults of parties holding CDS contracts. In this paper we develop a valuation/pricing model for a CDS subject to counterparty risks. Using the Cox–Ingersoll–Ross (CIR) model for interest rate and first arrival times of Poisson processes with variable intensities for the occurrences of credit default and counterparty defaults, we derive a mathematical formulation and make a full theoretical investigation. In addition, we develop a full theory for the corresponding infinite horizon problem and establish its connection with the asymptotic long expiry behaviour of finite horizon problem. Furthermore, we establish a connection between two major frameworks for default times: the structure model approach and the intensity model approach. We show that a solution of the structure model can be obtained as the limit of a sequence of solutions of intensity models. Regarded as an important theoretical development, we remove a constraint typically imposed on the parameters of the CIR model; that is, the well-posedness (existence, uniqueness and continuous dependence of parameters) of the mathematical model holds for any empirically calibrated parameters for the CIR model.
We introduce variance-optimal semi-static hedging strategies for a given contingent claim. To obtain a tractable formula for the expected squared hedging error and the optimal hedging strategy we use a Fourier approach in a multidimensional factor model. We apply the theory to set up a variance-optimal semi-static hedging strategy for a variance swap in the Heston model, which is affine, in the 3/2 model, which is not, and in a market model including jumps.
Asset allocation with a derivative security is studied in a hidden, Markovian regime-switching, economy using filtering theory and the martingale approach. A generalized delta-hedged ratio and a generalized elasticity of an option are introduced to accommodate the presence of the information state process and the derivative security. Malliavin calculus is applied to derive a solution for a general utility function which includes an exponential utility, a power utility, and a logarithmic utility. A compact solution is obtained for a logarithmic utility. Some economic implications of the solutions are discussed.
We consider the problem of pricing modern guarantee concepts in unit-linked life insurance, where the guaranteed amount grows contingent on the performance of an investment fund that acts simultaneously as the underlying security and the replicating portfolio. Using the Martingale Method, this nonstandard pricing problem can be transformed into a fixed-point problem, whose solution requires the evaluation of conditional expectations of highly path-dependent payoffs. By adapting the least-squares Monte Carlo method for American option pricing problems, we develop a new numerical approach to approximate the value of contingent guarantees and prove its convergence. Our valuation procedure can be applied to large-scale pricing problems, for which existing methods are infeasible, and leads to significant improvements in performance.
The geometric structure of the nonparametric statistical model of all positive densities connected by an open exponential arc and its intimate relation to Orlicz spaces give new insights to well-known financial objects which arise in exponential utility maximization problems.
In this paper we study a finite-fuel two-dimensional degenerate singular stochastic control problem under regime switching motivated by the optimal irreversible extraction problem of an exhaustible commodity. A company extracts a natural resource from a reserve with finite capacity and sells it in the market at a spot price that evolves according to a Brownian motion with volatility modulated by a two-state Markov chain. In this setting, the company aims at finding the extraction rule that maximizes its expected discounted cash flow, net of the costs of extraction and maintenance of the reserve. We provide expressions for both the value function and the optimal control. On the one hand, if the running cost for the maintenance of the reserve is a convex function of the reserve level, the optimal extraction rule prescribes a Skorokhod reflection of the (optimally) controlled state process at a certain state and price-dependent threshold. On the other hand, in the presence of a concave running cost function, it is optimal to instantaneously deplete the reserve at the time at which the commodity's price exceeds an endogenously determined critical level. In both cases, the threshold triggering the optimal control is given in terms of the optimal stopping boundary of an auxiliary family of perpetual optimal selling problems with regime switching.
Motivated by a common mathematical finance topic, we discuss the reciprocal of the exit time from a cone of planar Brownian motion which also corresponds to the exponential functional of Brownian motion in the framework of planar Brownian motion. We prove a conjecture of Vakeroudis and Yor (2012) concerning infinite divisibility properties of this random variable and present a novel simple proof of the result of DeBlassie (1987), (1988) concerning the asymptotic behavior of the distribution of the Bessel clock appearing in the skew-product representation of planar Brownian motion, as t→∞. We use the results of the windings approach in order to obtain results for quantities associated to the pricing of Asian options.
This paper is devoted to the American option pricing problem governed by the Black-Scholes equation. The existence of an optimal exercise policy makes the problem a free boundary value problem of a parabolic equation on an unbounded domain. The optimal exercise boundary satisfies a nonlinear Volterra integral equation and is solved by a high-order collocation method based on graded meshes. This free boundary is then deformed to a fixed boundary by the front-fixing transformation. The boundary condition at infinity (due to the fact that the underlying asset's price could be arbitrarily large in theory), is treated by the perfectly matched layer technique. Finally, the resulting initial-boundary value problems for the option price and some of the Greeks on a bounded rectangular space-time domain are solved by a finite element method. In particular, for Delta, one of the Greeks, we propose a discontinuous Galerkin method to treat the discontinuity in its initial condition. Convergence results for these two methods are analyzed and several numerical simulations are provided to verify these theoretical results.
We provide an elementary method for exploring pricing problems of one spread options within a fractional Wick–Itô–Skorohod integral framework. Its underlying assets come from two different interactive markets that are modelled by two mixed fractional Black–Scholes models with Hurst parameters, $H_{1}\neq H_{2}$, where $1/2\leq H_{i}<1$ for $i=1,2$. Pricing formulae of these options with respect to strike price $K=0$ or $K\neq 0$ are given, and their application to the real market is examined.
This paper pioneers a Freidlin–Wentzell approach to stochastic impulse control of exchange rates when the central bank desires to maintain a target zone. Pressure to stimulate the economy forces the bank to implement diffusion monetary policy involving Freidlin–Wentzell perturbations indexed by a parameter ε∈ [0,1]. If ε=0, the policy keeps exchange rates in the target zone for all times t≥0. When ε>0, exchange rates continually exit the target zone almost surely, triggering central bank interventions which force currencies back into the zone or abandonment of all targets. Interventions and target zone deviations are costly, motivating the bank to minimize these joint costs for any ε∈ [0,1]. We prove convergence of the value functions as ε→0 achieving a value function approximation for small ε. Via sample path analysis and cost function bounds, intervention followed by target zone abandonment emerges as the optimal policy.
This paper uses recent results on continuous-time finite-horizon optimal switching problems with negative switching costs to prove the existence of a saddle point in an optimal stopping (Dynkin) game. Sufficient conditions for the game's value to be continuous with respect to the time horizon are obtained using recent results on norm estimates for doubly reflected backward stochastic differential equations. This theory is then demonstrated numerically for the special cases of cancellable call and put options in a Black‒Scholes market.
We present an asymptotically optimal importance sampling for Monte Carlo simulation of the Laplace transform of exponential Brownian functionals which plays a prominent role in many disciplines. To this end we utilize the theory of large deviations to reduce finding an asymptotically optimal importance sampling measure to solving a calculus of variations problem. Closed-form solutions are obtained. In addition we also present a path to the test of regularity of optimal drift which is an issue in implementing the proposed method. The performance analysis of the method is provided through the Dothan bond pricing model.
Optimal control problems of stochastic switching type appear frequently when making decisions under uncertainty and are notoriously challenging from a computational viewpoint. Although numerous approaches have been suggested in the literature to tackle them, typical real-world applications are inherently high dimensional and usually drive common algorithms to their computational limits. Furthermore, even when numerical approximations of the optimal strategy are obtained, practitioners must apply time-consuming and unreliable Monte Carlo simulations to assess their quality. In this paper, we show how one can overcome both difficulties for a specific class of discrete-time stochastic control problems. A simple and efficient algorithm which yields approximate numerical solutions is presented and methods to perform diagnostics are provided.