We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on the fundamental aspects of super-resolution, particularly addressing the stability of super-resolution and the estimation of two-point resolution. Our first major contribution is the introduction of two location-amplitude identities that characterize the relationships between locations and amplitudes of true and recovered sources in the one-dimensional super-resolution problem. These identities facilitate direct derivations of the super-resolution capabilities for recovering the number, location, and amplitude of sources, significantly advancing existing estimations to levels of practical relevance. As a natural extension, we establish the stability of a specific $l_{0}$ minimization algorithm in the super-resolution problem.
The second crucial contribution of this paper is the theoretical proof of a two-point resolution limit in multi-dimensional spaces. The resolution limit is expressed as
$$\begin{align*}\mathscr R = \frac{4\arcsin \left(\left(\frac{\sigma}{m_{\min}}\right)^{\frac{1}{2}} \right)}{\Omega} \end{align*}$$
for ${\frac {\sigma }{m_{\min }}}{\leqslant }{\frac {1}{2}}$, where ${\frac {\sigma }{m_{\min }}}$ represents the inverse of the signal-to-noise ratio (${\mathrm {SNR}}$) and $\Omega $ is the cutoff frequency. It also demonstrates that for resolving two point sources, the resolution can exceed the Rayleigh limit ${\frac {\pi }{\Omega }}$ when the signal-to-noise ratio (SNR) exceeds $2$. Moreover, we find a tractable algorithm that achieves the resolution ${\mathscr {R}}$ when distinguishing two sources.
Let f and g be analytic functions on the open unit disk ${\mathbb D}$ such that $|f|=|g|$ on a set A. We give an alternative proof of the result of Perez that there exists c in the unit circle ${\mathbb T}$ such that $f=cg$ when A is the union of two lines in ${\mathbb D}$ intersecting at an angle that is an irrational multiple of $\pi $, and from this, deduce a sequential generalization of the result. Similarly, the same conclusion is valid when f and g are in the Nevanlinna class and A is the union of the unit circle and an interior circle, tangential or not. We also provide sequential versions of this result and analyze the case $A=r{\mathbb T}$. Finally, we examine the most general situation when there is equality on two distinct circles in the disk, proving a result or counterexample for each possible configuration.
In analogy to classical spherical t-design points, we introduce the concept of t-design curves on the sphere. This means that the line integral along a t-design curve integrates polynomials of degree t exactly. For low degrees, we construct explicit examples. We also derive lower asymptotic bounds on the lengths of t-design curves. Our main results prove the existence of asymptotically optimal t-design curves in the Euclidean $2$-sphere and the existence of t-design curves in the d-sphere.
Sonar systems are frequently used to classify objects at a distance by using the structure of the echoes of acoustic waves as a proxy for the object’s shape and composition. Traditional synthetic aperture processing is highly effective in solving classification problems when the conditions are favourable but relies on accurate knowledge of the sensor’s trajectory relative to the object being measured. This article provides several new theoretical tools that decouple object classification performance from trajectory estimation in synthetic aperture sonar processing. The key insight is that decoupling the trajectory from classification-relevant information involves factoring a function into the composition of two functions. The article presents several new general topological invariants for smooth functions based on their factorisations over function composition. These invariants specialise to the case when a sonar platform trajectory is deformed by a non-small perturbation. The mathematical results exhibited in this article apply well beyond sonar classification problems. This article is written in a way that supports full mathematical generality.
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then
$f=g$
up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of
$\pi $
. We also prove that if f and g are functions in the Nevanlinna class, and if
$|f|=|g|$
on the unit circle and on a circle inside the unit disc, then
$f=g$
up to the multiplication of a unimodular constant.
Sign truncated matching pursuit (STrMP) algorithm is presented in this paper. STrMP is a new greedy algorithm for the recovery of sparse signals from the sign measurement, which combines the principle of consistent reconstruction with orthogonal matching pursuit (OMP). The main part of STrMP is as concise as OMP and hence STrMP is simple to implement. In contrast to previous greedy algorithms for one-bit compressed sensing, STrMP only need to solve a convex and unconstrained subproblem at each iteration. Numerical experiments show that STrMP is fast and accurate for one-bit compressed sensing compared with other algorithms.
Two algorithms for constructing a class of compactly supported conjugate symmetric complex tight wavelet frames ψ = {ψ1, ψ2} are derived. Firstly, a necessary and sufficient condition for constructing the conjugate symmetric complex tight wavelet frames is established. Secondly, based on a given conjugate symmetric low pass filter, a description of a family of complex wavelet frame solutions is provided when the low pass filter is of even length. When one wavelet is conjugate symmetric and the other is conjugate antisymmetric, the two wavelet filters can be obtained by matching the roots of associated polynomials. Finally, two examples are given to illustrate how to use our method to construct conjugate symmetric complex tight wavelet frames which have some vanishing moments.
We extend uncertainty principles which are valid for the Fourier transform to the setting of the ambiguity function. A general result is established for annihilating sets: strongly/weakly annihilating sets for the Fourier transform yield such sets for the ambiguity function, extending a result known for sets of finite measure. We apply this to sublevel sets of nondegenerate quadratic forms. Our main result is a sharp version of Beurling's uncertainty principle for the ambiguity function.
The third-generation (3G) mobile communication system uses a technique called code division multiple access (CDMA), in which multiple users use the same frequency and time domain. The data signals of the users are distinguished using codes. When there are many users, interference deteriorates the quality of the system. For more efficient use of resources, we wish to allow more users to transmit simultaneously, by using algorithms that utilize the structure of the CDMA system more effectively than the simple matched filter (MF) system used in the proposed 3G systems. In this paper, we investigate an advanced algorithm called hard-decision parallel interference cancellation (HD-PIC), in which estimates of the interfering signals are used to improve the quality of the signal of the desired user. We compare HD-PIC with MF in a simple case, where the only two parameters are the number of users and the length of the coding sequences. We focus on the exponential rate for the probability of a bit-error, explain the relevance of this parameter, and investigate how it scales when the number of users grows large. We also review extensions of our results, proved elsewhere, showing that in HD-PIC, more users can transmit without errors than in the MF system.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.