We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The article introduces and studies Hausdorff–Berezin operators on the unit ball in a complex space. These operators are a natural generalization of the Berezin transform. In addition, the class of such operators contains, for example, the invariant Green potential, and some other operators of complex analysis. Sufficient and necessary conditions for boundedness in the space of p – integrable functions with Haar measure (invariant with respect to involutive automorphisms of the unit ball) are given. We also provide results on compactness of Hausdorff–Berezin operators in Lebesgue spaces on the unit ball. Such operators have previously been introduced and studied in the context of the unit disc in the complex plane. Present work is a natural continuation of these studies.
where ${\it\mu}$ is a complex Borel measure with $|{\it\mu}|(\mathbb{D})<\infty$. We generalize this result to all Besov spaces $B_{p}$ with $0<p\leq 1$ and all Lipschitz spaces ${\rm\Lambda}_{t}$ with $t>1$. We also obtain a version for Bergman and Fock spaces.
Let $\left( X,\,B,\,\mu \right)$ be a $\sigma $-finite measure space and let $H\,\subset \,{{L}^{2}}\left( X,\,\mu \right)$ be a separable reproducing kernel Hilbert space on $X$. We show that the multiplier algebra of $H$ has property $\left( {{A}_{1}}\left( 1 \right) \right)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.