No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $\left( X,\,B,\,\mu \right)$ be a
$\sigma $-finite measure space and let
$H\,\subset \,{{L}^{2}}\left( X,\,\mu \right)$ be a separable reproducing kernel Hilbert space on
$X$. We show that the multiplier algebra of
$H$ has property
$\left( {{A}_{1}}\left( 1 \right) \right)$.