Subthalamic nucleus (STN) neurons have a pivotal role in basal ganglia, as a result of their intrinsic membrane properties, connections within the circuit and glutamatergic nature. Their innate pacemaker activity, consisting of a single-spike tonic mode of discharge, is abolished in the case of hemiballism, profoundly disrupted in the Parkinsonian state and replaced by a regular bursting mode under treatment (high-frequency stimulation, HFS). We propose that control STN activity represents a clock, an internal measure of time allowing the correct automatic execution of learned movements and, in particular, the automatic switch from one movement to the next in a sequential motor pattern. STN neuronal activity would be able to reset the frequency of oscillations of motor thalamo-cortical loops, notably in the γ band.