We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Drinking-water supply remains a significant challenge in tropical areas; to help meet this challenge, the purpose of the present study was to manufacture low-thermal conductivity ceramic membranes suitable for the retention/removal of particles found in non-potable water. These membranes with significant chemical and mechanical resistances were developed from Cameroonian clays, cassava starch, and bovine bone ash. Up to 30% of Cassava starch and bovine bone ash were added to the membrane as porogens (materials used to make pores in membranes). Membranes were manufactured by uniaxial pressing, drying at 105°C, and sintering at 1150°C for 2 h. The effects of various types of porogen on the thermal behavior, microstructure, flexural strength, porosity, and permeability of ceramic membranes were investigated to determine possible applications of those membranes for water filtration in the tropics. The thermal conductivity of membranes produced without a pore-forming agent (SM0) was greater (0.54 Wm–1K–1) than those produced with starch (SM1 and SM3) (0.45–0.40 Wm–1K–1) or bovine bone ash (SM2) (0.49 Wm–1K–1). The total porosity of SM0s (30.72%) was less than those of starch and bovine bone membranes (37.87–45.99%). The average pore size (0.04 μm) of SM2 membranes was the smallest: SM0 (0.09 μm), SM1 (0.10 μm), and SM3 (0.07 μm). The maximum pore size was 0.37 μm, indicating that membranes contain mesopores and macropores. The flexural strengths of SM1 and SM3 membranes (8.85 and 6.97 MPa, respectively) were less than those of SM2 (10.53 MPa) and SM0 (10.28 MPa), and water permeability from 108 L/h·m2 bar to 2198 L/h·m2 bar. Filtered water properties showed that pH values were upgraded from 5.9 to 7, the turbidity reduction rates and levels were >94% and <0.65 NTU. Particle-size distributions moved from 1150–39,000 nm in polluted water to <2 nm in filtered water. Judging by the sizes of particles present in filtered waters, these membranes may be suitable for elimination of viruses, pigments, proteins, colloids, and bacteria.
Over the past several decades, there have been a number of national and international meetings on waterborne diseases. Conclusions from these meetings often seem remarkably similar and suggest little progress in the field of water and health. This is both a true and a false premise, as our ability to use molecular tools to describe microbial communities has advanced to the level at which whole genome sequencing is now a routine practice and can even be deployed in the field. This article seeks to illustrate both these advances and their limitations, especially for use in low-resourced settings. What remains clear is that for most of the world, basic hygiene and sanitation measures can do more for human health than any of our current advances in molecular biology. That is not to say that these advances are not remarkable and that they can undoubtedly revolutionize risk-based testing and surveillance. Although there are many factors that contribute to increased risks from waterborne diseases, climate change above all else is creating challenges that we are ill-prepared to meet. The biggest barrier to control of these diseases is not limitations in technology but has been and continues to be the lack of political will and economic incentives.
Over the past two decades, the incidence of legionellosis has been steadily increasing in the United States though there is noclear explanation for the main factors driving the increase. While legionellosis is the leading cause of waterborne outbreaks in the US, most cases are sporadic and acquired in community settings where the environmental source is never identified. This scoping review aimed to summarise the drivers of infections in the USA and determine the magnitude of impact each potential driver may have. A total of 1,738 titles were screened, and 18 articles were identified that met the inclusion criteria. Strong evidence was found for precipitation as a major driver, and both temperature and relative humidity were found to be moderate drivers of incidence. Increased testing and improved diagnostic methods were classified as moderate drivers, and the ageing U.S. population was a minor driver of increasing incidence. Racial and socioeconomic inequities and water and housing infrastructure were found to be potential factors explaining the increasing incidence though they were largely understudied in the context of non-outbreak cases. Understanding the complex relationships between environmental, infrastructure, and population factors driving legionellosis incidence is important to optimise mitigation strategies and public policy.
Public understanding of the water system is vital in confronting contemporary water challenges, as public support is necessary for implementing measures to address shortages and repair infrastructure. In this study, university student participants (N = 457) were asked to draw diagrams illustrating how water reaches the tap in an average home in the U.S. and is then returned to the natural environment. We also conducted an expert elicitation (N = 15) to create a simplified, accurate diagram by which to code each student drawing. Results showed major gaps in understanding, where 29% of the student participants did not draw a water treatment plant, 64% did not draw a wastewater treatment plant, and 1 in 5 participants depicted untreated wastewater returning to the natural environment. For the majority of non-environmental students, the water system stops at the home. These gaps reveal a critical area for public environmental education efforts.
This chapter reverses the vicious cycle from previous chapters into a virtuous cycle of trust and government excellence. Excellent and responsive government agencies foster trusting citizen-consumers who use, advocate for, and support public services. Citizen-consumers who consume public services instead of exiting to commercial alternatives are more likely to support paying for further improvements to public services. Specifically, tap water drinkers are more likely than bottled water drinkers to support paying increased water rates to fund water infrastructure improvements. We then show how the citizen exercise of voice pushes public officials to provide higher-quality services. Although governments are not well suited to respond to citizen-consumer exit, they are designed to respond to the use of voice. Increased political participation raises the possibility of punishment for poor service delivery, incentivizing officials to keep service quality high. We find that increased electoral turnout is associated with decreases in water quality violations. Reframing the relationship between trust and public services as a virtuous cycle allows us to imagine a better way forward.
The choices Americans make about the water that they drink reveal deeper lessons about civic life. Consumers’ spending choices reflect, in part, their identities as citizens, and citizens’ political decisions reflect their assessments of value as consumers. When government produces or regulates a basic service, the citizen-consumer’s choice between the public provider and a private, commercial firm reflects, in part, her trust in the institutions of government. Despite America’s widely available, highly reliable, high-quality tap water, the US commercial bottled water industry has exploded over the past two decades. This skyrocketing growth comes at a time of declining trust in American government. When tap water failures occur, citizen-consumers abandon utilities in favor of commercial water, and the most distrustful and politically marginalized people are most likely to opt for bottled water. Thus, distrust of government and consumption of bottled water are most pronounced among the poor and racial/ethnic minority communities. Commercial drinking water firms capitalize on this distrust with targeted marketing and growth strategies.
High-profile water contamination crises like the one in Flint, Michigan, shake confidence in US water systems. This chapter examines the links between tap water failure, reduced trust in utilities and government, and increased demand for commercial water. We show that negative experiences with basic service quality erode overall trust in government and increase demand for private alternatives. Analyses of data from three independent national surveys demonstrate that individuals who experience problems with their local water such as dirty, bad-tasting, or low-pressure water service also report lower trust in local, state, and federal government. The relationship between water service quality and trust in government persists after controlling for party identification, race, ethnicity, and socioeconomic status. We also find that tap water failure correlates with increased demand for commercial water sold from water kiosks, privately owned commercial water vendors. Taken together, these findings suggest that basic service failure erodes performative trust in government and increases demand for commercial drinking water.
Distrust in government is contagious. Awareness of drinking water problems can lead the public to distrust their own local water supply, even when people do not personally experience basic service failure. For examlple, lead-testing requests increased dramatically in Providence, Rhode Island, following the water crisis in Flint, Michigan. This chapter examines the ways that water quality problems in one water utility affect customer behavior in other communities. Using an SLX spatial econometric modeling strategy, we show that communities’ demand for commercial water increases in response to other communities’ tap water problems when the communities are demographically and/or socioeconomically alike. Notably, these “spillover” effects are strongest for communities that are socially similar: The physical distance between communities does not affect demand for commercial drinking water in the same way. These findings indicate that problems with tap water anywhere have the potential to cause distrust of tap water everywhere.
The burgeoning bottled water industry presents a paradox: Why do people choose expensive, environmentally destructive bottled water, rather than cheaper, sustainable, and more rigorously regulated tap water? The Profits of Distrust links citizens' choices about the water they drink to civic life more broadly, marshalling a rich variety of data on public opinion, consumer behavior, political participation, geography, and water quality. Basic services are the bedrock of democratic legitimacy. Failing, inequitable basic services cause citizen-consumers to abandon government in favor of commercial competitors. This vicious cycle of distrust undermines democracy while commercial firms reap the profits of distrust – disproportionately so from the poor and racial/ethnic minority communities. But the vicious cycle can also be virtuous: excellent basic services build trust in government and foster greater engagement between citizens and the state. Rebuilding confidence in American democracy starts with literally rebuilding the basic infrastructure that sustains life.
According to the WHO, anaemia is a severe public health problem when the prevalence is ≥ 40 %. In 2019, in Peru, 40·1 % of children (aged 6 to 35 months) are diagnosed as anaemic. This is a concern since, despite the efforts of the governments to reduce the prevalence, the problem has stagnated since 2011. The treatment applied to deal with anaemia is Fe supplementation. Although Fe is essential for cell function, an excess can produce adverse responses, such as gut inflammation affecting microbiota and resulting in diarrhoeic episodes.
Objective:
To determine the association between diarrhoea and Fe supplementation in children with and without anaemia, controlling for different socio-demographic variables.
Design:
We conducted via logistic regression to obtain diarrhoea prevalence ratios (PR), adjusted by age, sex, geographic region, water and sanitation service, and rurality. The survey asked for recent episodes of diarrhoea during the last 7 d; similarly, after the consumption of Fe supplements during the last 12 months before the survey.
Setting:
Peru.
Participants:
The Demographic and Family Health Survey (DHS) is conducted annually at home among 14 202 children on average (2009–2019).
Results:
Fe supplementation in the last 7 d (PR = 1·09) or the last 12 months (PR = 1·19) (P < 0·0001) was associated with an increased risk of diarrhoea. The same association was observed between Fe supplementation and the presence of anaemia.
Conclusions:
Fe supplementation is associated with diarrhoea and overuse in children should be avoided.
Hydration is a particular concern for infants and young children due to their greater risk of dehydration. However, studies on their water intakes are scarce. The current survey aimed to analyse total water intake (TWI) in non-breastfed children aged 0·5–35 months compared with the adequate intake (AI) for the same age group set by the European Food Safety Authority and to examine the different contributors to TWI as well as beverage consumption patterns. Nationally representative data from the Nutri-Bébé cross-sectional survey were used to assess food, beverage and plain water consumption by age group over three non-consecutive days. With age, median TWI in 1035 children increased from 732 to 1010 ml/d, without differences between sexes, but with a great inter-individual variation, and the percentage of children who did not meet the AI increased from 10 to 88 %. Median weight-related TWI decreased from 136·6 to 69·0 ml/kg per d. Among infants, 90 % had a ratio of water:energy below the AI, similarly for about 75 % of toddlers. Milk and milk products were the main contributors to TWI, while the part of plain water increased gradually to be 25 % in the older toddlers, half of which was tap water. The beverage consumption pattern varied in types and timing, with little consumption of juices and sweetened beverages. Vegetables and fruits accounted for 20 % of TWI after the age of 6 months. These initial results, showing strong discrepancies between actual and recommended water intakes in young children, should help identify ways to increase children’s water consumption.
Describes mounting scientific evidence for individual, lifelong poisoning by man-made chemical emissions, showing how it begins in the womb, continues through childhood, accumulates through life and persists after death. Chemical exposure is mainly from food, drinks, cosmetics and air in the home, workplace, urban and rural environments. Pollution the largest environmental cause of disease and premature death in the world today.
In pharmacological doses, lithium successfully treats bipolar disorder and it can reduce violent crimes committed by individuals with this disorder.
Aims
To investigate whether naturally occurring lithium in drinking water lowers rates of violent crime in the general population.
Method
We examined lithium levels in the drinking water of the 274 municipalities of Kyushu Island in Japan and compared these with the crime rates in each municipality.
Results
We found that lithium levels were significantly and inversely associated with crime rates in 2009.
Conclusions
Our findings suggest that even very low levels of lithium in drinking water may play a role in reducing crime rates in the general population.
Low probability risks create challenges for individual decisions and potential pressures for government regulation. This article reports original survey evidence regarding the public’s perception and valuation of water-related risks from plastic bottles with bisphenol A, residues in drinking water of the herbicide atrazine, and trace amounts of prescription drugs in water. People who believe that they face high water-related risks generally believe that the risks apply and, given that belief, are willing to pay more to limit the risk. However, the expressed willingness to pay for risk reductions is inordinately high even among those who are unsure of whether they are even exposed to the risk, and therefore may not be reliable as values for the actual benefits.
Due to global climatic changes, water and soil salinization is an increasing worldwide phenomenon, thus creating new threats for farm animal production. The present study was designed to investigate the adaptation capacity of goats towards sodium chloride (NaCl) in drinking water. Twelve non-pregnant Boer goats with an average body weight of 50.5 ± 9.0 kg were kept in individual pens. The study was conducted in four phases applying a two-choice preference test. In the control phase (phase 1) only fresh water was supplied in two containers. In phase 2, water with different salt concentrations (0.25%, 0.5%, 0.75%, 1.0%, 1.25% and 1.5%) was offered in one container and tap water in the other (sensitivity test). During the third phase (adaptation), goats were stepwise habituated to saline water by offering only saline water with different increasing concentrations (between 0% and 1.5% NaCl) in both containers. Subsequently, in phase 4 (sensitivity re-test) the same treatment as in phase 2 was repeated. Goats had ad libitum access to hay, water and a mineral licking block. Individual water and feed intake were recorded daily, while body weight and body condition score were measured every 2nd week. Body weight was not affected by saline water intake, whereas dry matter intake and body condition scores decreased significantly during the experiment. Water intake was significantly (P<0.001) higher in phase 2 (sensitivity test) and phase 3 (adaptation), compared to phase 1 (control) and phase 4 (sensitivity re-test). Total sodium intake followed the same pattern. In phase 2, when goats had the choice between fresh and saline water for the first time they preferred higher salt concentrations and consumed significantly (P<0.001) higher amounts of saline water (75.4 ± 53.2 g/kg BW0.82 per day) than in the re-test (40.4 ± 34.0 g/kg BW0.82 per day) after the habituation period. Thus, salt discrimination rejection thresholds were lowered to 1.25% in phase 4 compared to 1.5% in phase 2. The results suggest that a stepwise adaptation to saline drinking water in goats is an effective method to habituate the animals to saline water intake when concentrations were below 1.5%. Goats reacted more sensitively to the salinity of drinking water after prolonged exposure to saline water indicating flexible regulation mechanisms depending on the total sodium balance of the animal.
Human fascioliasis infection sources are analysed for the first time in front of the new worldwide scenario of this disease. These infection sources include foods, water and combinations of both. Ingestion of freshwater wild plants is the main source, with watercress and secondarily other vegetables involved. The problem of vegetables sold in uncontrolled urban markets is discussed. Distinction between infection sources by freshwater cultivated plants, terrestrial wild plants, and terrestrial cultivated plants is made. The risks by traditional local dishes made from sylvatic plants and raw liver ingestion are considered. Drinking of contaminated water, beverages and juices, ingestion of dishes and soups and washing of vegetables, fruits, tubercles and kitchen utensils with contaminated water are increasingly involved. Three methods to assess infection sources are noted: detection of metacercariae attached to plants or floating in freshwater, anamnesis in individual patients, and questionnaire surveys in endemic areas. The infectivity of metacercariae is reviewed both under field conditions and experimentally under the effects of physicochemical agents. Individual and general preventive measures appear to be more complicated than those considered in the past. The high diversity of infection sources and their heterogeneity in different countries underlie the large epidemiological heterogeneity of human fascioliasis throughout.
In May 2016 a Norovirus (NoV) gastroenteritis outbreak involved a high school class visiting a seaside resort near Taormina (Mascali, Sicily). Twenty-four students and a teacher were affected and 17 of them showed symptoms on the second day of the journey, while the others got ill within the following 2 days. Symptoms included vomiting, diarrhoea and fever, and 12 students required hospitalisation. Stool samples tested positive for NoV genome by Real-Time polymerase chain reaction assay in all 25 symptomatic subjects. The GII.P2/GII.2 NoV genotype was linked to the outbreak by ORF1/ORF2 sequence analysis. The epidemiological features of the outbreak were consistent with food/waterborne followed by person-to-person and/or vomit transmission. Food consumed at a shared lunch on the first day of the trip was associated to illness and drinking un-bottled tap water was also considered as a risk factor. The analysis of water samples revealed the presence of bacterial indicators of faecal contamination in the water used in the resort as well as in other areas of the municipal water network, linking the NoV gastroenteritis outbreak to tap water pollution from sewage leakage. From a single water sample, an amplicon whose sequence corresponded to the capsid genotype recovered from patients could be obtained.
Systematic supervision procedures have been proposed to improve contingent valuation surveying, particularly in developing countries. Surprisingly, the CV literature does not say much about the potential effects of supervision even though there is evidence of interviewer effects and social desirability issues that can bias results. This paper investigates the effects of interview supervision on the valuation of public services, using split-sample treatments to include a test of scope of a nested good and to assess the effect of interview supervision on reported WTP. Results suggest that supervisors can be used to improve quality with no effect on WTP estimates.
Few studies have examined the impacts of ground water quality on residential property values. Using a unique data set of well tests, we link residential real estate transactions to home-specific contamination and conduct a hedonic analysis of sales in Lake County, Florida, where pollution concerns relate primarily to agricultural run-off. We find that recent testing and contamination of ground water there correspond to a 2–6 percent depreciation in home values, an effect that diminishes over time. Focusing on nitrogen-based contamination, we find that prices decline mainly when concentrations exceed the regulatory health standard, suggesting as much as a 15 percent depreciation at levels twice the standard.
Organic pollutants are present in drinking waters due to inefficient detection and removal treatments. For this reason, zebrafish is proposed as a complementary indicator in conventional potabilization treatments. Based on the most sensitive parameters detected in our previous work, in this study we attempted to examine the possible cumulative effect between generations of environmental pollutants likely present in drinking waters, when specimens were cultured in the same water and/or the possible reversibility of these effects when cultured in control water. To this end, embryos with the chorion intact were cultured in three drinking waters from different sources and in one control water for up to 5 months in 20 l glass tanks. Four replicates were performed in all water groups. Results in water group C (tap water from a city also located in a region with intensive agricultural activity, but from the hydrological basin of the river Xúquer) revealed a non-reversible effect on fertility rate. Also in water C there was an alteration of sex ratio towards females, although in this case the alteration was reversible. A transgenerational alteration in the germ-line via an epigenetic mechanism from the previous generation is proposed as the most plausible explanation of this effect.