We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extrapyramidal symptoms are movement disorders associated with antipsychotics and include acute dystonias, akathisia, Parkinsonism, tardive dyskinesia, and neuroleptic malignant syndrome. Antipsychotic-related Parkinsonism and akathisia are the most commonly encountered antipsychotic related movement disorders. Tardive dyskinesia occurs with long-term antipsychotic use and can be very impactful on quality of life. Treatment options exist for those with tardive dyskinesia dependent on antipsychotics.
Edited by
Nevena V. Radonjić, State University of New York Upstate Medical University,Thomas L. Schwartz, State University of New York Upstate Medical University,Stephen M. Stahl, University of California, San Diego
Maximum phonation time is a simple test used to assess glottic competency. Our objective was to evaluate any correlation between maximum phonation time and spasmodic dysphonia as adductor spasmodic dysphonia and abductor spasmodic dysphonia have an adductor and abductor overdrive, respectively.
Methods
A 3-year data-review was performed for patients diagnosed with adductor spasmodic dysphonia, abductor spasmodic dysphonia and mixed spasmodic dysphonia. Maximum phonation time was noted on the first visit and compared with a control group.
Results
Average maximum phonation time in adductor spasmodic dysphonia, abductor spasmodic dysphonia and control group was 25 seconds, 9 seconds and 16 seconds. A significant difference was found for adductor spasmodic dysphonia and abductor spasmodic dysphonia. A receiver operating characteristic curve analysis between adductor spasmodic dysphonia and control groups showed a positive predictive value of 81.3 per cent, negative predictive value of 83.9 per cent, sensitivity of 79.6 per cent and specificity of 85.2 per cent. Level of evidence = 4.
Conclusion
We recommend that maximum phonation time be added to the diagnostic armamentarium of spasmodic dysphonia. This correlation between maximum phonation time and spasmodic dysphonia has not been previously published.
Cerebral palsy is not a specific disease, but a clinical syndrome caused by a non-progressive injury to the developing brain that results in a disorder of movement and posture that is permanent but not unchanging. Spasticity is the most common movement disorder, affecting between 60% and 80% of children with cerebral palsy, and can manifest as spastic hemiplegia, spastic diplegia and spastic quadriplegia. Dystonia is characterized by involuntary sustained or intermittent muscle contractions that cause twisting and repetitive movements, abnormal postures or both. Athetosis, or intermittent writhing movement, is also very common. These movement disorders are all amenable to treatment with botulinum neurotoxin (BoNT). This chapter discusses topographical symptom distribution and illustrates the typical forms of cerebral palsy using an anatomical approach to management. Common clinical patterns of spastic posturing, the major involved, muscles and dose ranges for the different toxin preparations are tabulated.
In 1980, Alan B Scott published the use of botulinum neurotoxin type A by injection into extraocular muscles for treatment of strabismus. Use in blepharospasm was published in 1985, and cervical dystonia in 1986, followed by hemifacial spasm and other dystonias, including spasmodic dysphonia, hand dystonia, and conditions such as limb spasticity.
Formulations of neurotoxin type A worldwide include: Botox/onabotulinumtoxinA, Dysport/abobotulinumtoxinA, Xeomin/incobotulinumtoxinA, and a Chinese product marketed under various brand names in Asia. Botulinum neurotoxin type B is marketed as Neurobloc/Myobloc, or rimabotulinumtoxinB. PrabotulinumtoxinA and daxibotuinumtoxinA-Ianm are type A toxins under development.
We hypothesized that “long latency reflexes” (LLRs), associated segmental reflex (SR), and mixed nerve silent periods (MnSPs) recorded on the distal upper extremity muscles would behave differently in patients with cervical dystonia and focal hand dystonia. We enrolled patients with cervical dystonia, generalized dystonia, focal hand dystonia, and healthy individuals. We recorded SR, LLRs, and MnSPs. The mean amplitude of SR on the affected side of focal hand dystonia was significantly lower (p = 0.010). The parameters related to LLRs and MnSPs were not different between groups. We suggest, using SR, LLRs, and MnSPs, we could not show an electrophysiological signature specific to dystonia.
Movement disorders are rarely medical emergencies or reason for evaluation in the emergency department (ED). However, they may be seen, and range from the familiar parkinsonism and drug-induced dystonia to rare disabling hemiballism secondary to a stroke. Movement disorders are typically a sign of an underlying neurological or nonneurological disorder, rather than the primary diagnosis. They can be strange in appearance and are often misdiagnosed as being hysterical or psychiatric in origin. In the ED, movement disorders are diagnosed based on a history and physical examination, with relatively few contributions from laboratory and radiographic studies.
Drug-induced movement disorders (DIMDs) form an important subgroup of secondary movement disorders, which despite conferring a significant iatrogenic burden, tend to be under-recognized and inappropriately managed.
Objective
We aimed to look into phenomenology, predictors of reversibility, and its impact on the quality of life of DIMD patients.
Methods
We conducted the study in the Department of Neurology at a tertiary-care centre in India. The institutional ethics-committee approved the study. We assessed 55-consecutive DIMD patients at presentation to our movement disorder clinic. Subsequently, they followed up to evaluate improvement in severity-scales (UPDRS, UDRS, BARS, AIMS) and quality of life (EuroQol-5D-5L). Wilcoxan-signed-rank test compared the scales at presentation and follow-up. Binary-logistic-regrerssion revealed the independent predictors of reversibility.
Results
Fourteen patients (25.45%) had acute-subacute DIMD and 41 (74.55%) had tardive DIMD. Tardive-DIMD occurred more commonly in the elderly (age 50.73±16.92 years, p<0.001). Drug-induced-Parkinsonism (DIP) was the most common MD, followed by tardivedyskinesia. Risperidone and levosulpiride were the commonest culprit drugs. Patients in both the groups showed a statistically significant response to drug-dose reduction /withdrawal based on follow-up assessment on clinical-rating-scales and quality of life scores (EQ-5D-5L). DIMD was reversible in 71.42% of acute-subacute DIMD and 24.40% of patients with chronic DIMD (p=0.001). Binary-logistic-regression analysis showed acute-subacute DIMDs and DIP as independent predictors of reversibility.
Conclusion
DIP is the commonest and often reversible drug-induced movement disorder. Levosulpiride is notorious for causing DIMD in the elderly, requiring strict pharmacovigilance.
In this chapter we describe different types of movement disorders that associate with autoimmune encephalitis, and the antibodies more frequently involved. In children the most common disorders are Sydenham chorea and anti-NMDAR encephalitis. Abnormal movements occur in ~80% of patients with anti-NMDAR encephalitis and include multiple different types such as chorea, oromandibular dystonia, stereotypies, opistotonus, catatonia, or myorhythmia. Children who develop anti-NMDAR encephalitis as a complication of previous herpes simplex viral encephalitis present prominent generalized chorea or choreoathetosis. In adults the most frequent autoimmune neurological disease that associates with movement disorders is anti-IgLON5 disease. More than 80% of patients this disease develop at least one type of movement disorder; gait instability or ataxia associated with craniofacial dyskinesias or generalized chorea are the most common combination of movement disorders. Hyperekplexia is a major manifestation of progressive encephalomyelitis with rigidity and myoclonus (PERM), which is usually associated with glycine receptor antibodies; some patients with similar symptoms have DPPX antibodies. Autoimmune chorea in adults may also be a paraneoplastic manifestation of small-cell lung cancer and CRMP5 antibodies. The most common paroxysmal abnormal movement of autoimmune origin is faciobrachial dystonic seizures associated with LGI1 antibodies. Patients with anti-CASPR2 encephalitis may have paroxysmal episodes of cerebellar ataxia that precede the encephalitis. Anti-CASPR2 encephalitis can also cause orthostatic myoclonus.
Niemann-Pick disease type C (NPC), is a rare lysosomal storage disorder, which has a variable presentation based on the age of onset. We describe five adult/adolescent-onset NPC cases presenting with a range of movement disorders along with vertical supranuclear gaze palsy as part of the clinical presentation. A diagnostic delay of 4–17 years from the symptom onset was found in this case series. A high index of clinical suspicion in adult/adolescent patients presenting with vertical supranuclear gaze palsy along with various movement disorder phenomenology can help in the early diagnosis of NPC.
Pisa Syndrome or pleurothotonus is a form of dystonia and often can arise as a side effect of antipsychotic treatment conditioning high morbidity and limiting management options. Despite the fact that the precise mechanism remains unclear, a neurochemical imbalance in dopaminergic and cholinergic transmission but also in serotoninergic and noradrenergic transmission can be a possible pathophysiologic mechanism, which can lead to changes in the axial axis with abnormal posture and marked lateral trunk flexion and abnormal gait.
Objectives
Regarding a clinical case, the authors intend to review the relevant and current literature on the relationship between psychotropic drugs and Pisa Syndrome.
Methods
Description of a clinical case by consulting databases of current and scientifically relevant articles.
Results
The clinical case reports a 48-year-old woman with a history of HIV and Substance Use Disorder, hospitalized for unspecific behavioral changes, characterized by mood changes, self-referential, persecutory and somatic delusional ideas, and delusions of the control of thought. She was medicated with antipsychotics and mood stabilizers, with subsequent development of an acute-onset dystonic condition, characterizing the Pisa Syndrome. In this context, the dose of antipsychotics was lowered and anticholinergics were introduced, with progressive improvement of the clinical picture.
Conclusions
Pisa Syndrome, previously seen as a rare adverse effect, can occur as a dystonic reaction related to the use of psychotropic drugs, so its use should be judicious. Further studies are needed to understand the extent of this association and its pathophysiological mechanisms in order to guide more rigorous therapeutic lines.
Prolonged remission of dystonia occurs rarely; however, well-documented cases are lacking. We report the clinical characteristics and course of four patients with botulinum toxin (BoNT)-associated prolonged remission of idiopathic cervical dystonia. Mean age at onset was 40 years. All had a relatively short duration of symptoms (mean 10.3 months), and with remission occurring after ≤ 3 treatments with BoNT. At last examination, the remission duration was 2–5 years. In the two cases that subsequently relapsed after 4–5 years, there was an altered phenomenology and worsened severity than at the onset. Recognizing this rare phenomenon has valuable clinical implications.
Microelectrode recordings (MERs) are used during deep brain stimulation surgery (DBS) to optimize patient outcomes and provide a unique method of collecting data regarding neurological conditions. However, MERs can be affected by anesthetics such as dexmedetomidine. Little is known about the effects of dexmedetomidine (DEX) on the globus pallidus interna (GPi), a common target for DBS. The primary aim of this study is to investigate the hypothesis that DEX is associated with alterations in GPi MERs.
Methods:
We conducted a retrospective analysis comparing MERs from patients with Parkinson’s disease (PD) and dystonia who underwent insertion of DBS of the GPi under DEX sedation with those who went through the same procedure without DEX (No DEX).
Results:
Firing rates for GPi neurons in the DEX group were lower (57.44 ± 2.04; mean ± SEM, n = 163 cells) than the No DEX group (69.53 ± 2.06, n = 112 cells, P < 0.0001). Overall, DEX was associated with a greater proportion of GPi cells classified as firing in bursty pattern compared to our No DEX group. (29.41%, n = 153 vs 14.81%, n = 108, P = 0.008). This effect was present for both PD and dystonia patients who underwent the procedure. High doses of DEX were associated with lower firing rates than low doses.
Conclusions:
Our results suggest that DEX is associated with a decrease in GPi firing rates and are associated with an increase in burstiness. Furthermore, these effects are similar between dystonia and PD patients. Lastly, the effects of DEX may differ between high doses and low doses.
Functional movement disorders (FMDs) pose significant diagnostic and management challenges. We aimed to study the socioeconomic and cultural factors, underlying psychopathology and the phenomenology of FMDs in children.
Methods:
The study is a retrospective chart review of 39 children (16 girls and 23 boys) who attended our neurology OPD and the movement disorders clinic at the National Institute of Mental Health and Neurosciences (NIMHANS) between January 2011 and May 2020. The diagnosis of FMD was based on Fahn and Williams criteria and the patients were either diagnosed as “documented” or “clinically established”. All the relevant demographic data including the ethnicity, socioeconomic and cultural background, examination findings, electrophysiological, and other investigations were retrieved from the medical records.
Results:
The mean age at onset was 12.69 ± 3.13 years. Majority of the children were from urban regions (56.41%) and belonging to low socioeconomic status (46.15%). Thirty (76.92%) were found to have a precipitating factor. Myoclonus was the most common phenomenology observed in these patients (30.76%), followed by tremor (20.51%), dystonia (17.94%), and gait abnormality (7.69%). Chorea (5.12%) and tics (2.56%) were uncommon. Tremor (37.5%) and dystonia (18.75%) were more common in girls, whereas myoclonus (39.13%) was more common in boys.
Conclusions:
The symptoms of FMD have great impact on the mental health, social, and academic functioning of children. It is important to identify the precipitating factors and associated psychiatric comorbidities in these children as prompt alleviation of these factors by engaging parents and the child psychiatrist will yield better outcomes.